Search results for: flow properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4952

Search results for: flow properties

1022 Free Vibration Analysis of Functionally Graded Pretwisted Plate in Thermal Environment Using Finite Element Method

Authors: S. Parida, S. C. Mohanty

Abstract:

The free vibration behavior of thick pretwisted cantilevered functionally graded material (FGM) plate subjected to the thermal environment is investigated numerically in the present paper. A mathematical model is developed in the framework of higher order shear deformation theory (HOST) with C0 finite element formulation i.e. independent displacement and rotations. The material properties are assumed to be temperature dependent and vary continuously through the thickness based on the volume fraction exponent in simple power rule. The finite element model has been discretized into eight node quadratic serendipity elements with node wise seven degrees of freedom. The effect of plate geometry, temperature field, material composition, and the modal analysis on the vibrational characteristics is examined. Finally, the results are verified by comparing with those available in literature.

Keywords: FGM, pretwisted plate, thermal environment, HOST, simple power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1021 Theoretical Considerations for Software Component Metrics

Authors: V. Lakshmi Narasimhan, Bayu Hendradjaya

Abstract:

We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.

Keywords: Component Assembly, Component Based SoftwareEngineering, CORBA Component Model, Software ComponentMetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
1020 Enzymatic Esterification of Carboxylic Acids and Higher Alcohols in Organic Medium

Authors: D.T. Mirzarakhmetova

Abstract:

The studying of enzymatic esterification of carboxylic acids and higher alcohols was performed by esterase Saccharomyces cerevisiae in water-organic medium. Investigation of the enzyme specificity to acetic substrates showed the best result with acetic acid in esterification reactions with ethanol whereas within other carboxylic acids the esterification decreased with acids: hexanoic > pentanoic > butyric > decanoic. In relation to higher alcohols C3-C5, esterification increased with alcohols propanol < butanol < amylol. Also it was determined that esterase was more specific to alcohols with branched chain such as isobutyl alcohol and isoamyl alcohol. Data obtained may have important practical implications, for example, for application of yeast esterase in producing various volatile esters as well as in enzymatic transformation of volatile acids and toxic fusel alcohols into volatile esters by providing the production of the high quality alcoholic beverages with redused content of higher alcohols as well as with improved degustational and hygienic properties.

Keywords: enzymes in non-conventional media, esterification, higher alcohols, volatile esters, yeast esterase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
1019 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
1018 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric

Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui

Abstract:

This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.

Keywords: Anisotropy, Off-axis tensile test, strain fields, Textile woven fabric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1017 The Comparison of Some Soil Quality Indexes in Different Land uses of Ghareh Aghaj Watershed of Semirom, Isfahan, Iran

Authors: Bahareh Aghasi, Ahmad Jalalian, Naser Honarjoo

Abstract:

Land use change, if not based on proper scientific investigation affects other physical, chemical, and biological properties of soil and leading to increased destruction and erosion. It was imperative to study the effects of changing rangelands to farmlands on some Soil quality indexes. Undisturbed soil samples were collected from the depths of 0-10 and 10-30 centimeter in pasture with good vegetation cover(GP), pasture with medium vegetation cover(MP), abandoned dry land farming(ADF) and degraded dry land farming(DDF) land uses in Ghareh Aghaj watershed of Isfahan province. The results revealed that organic matter(OM), cation exchange capacity(CEC) and available potassium(AK) decreasing in the depth of 0-10 centimeter were 66.6, 38.8 and 70 percent and in the depth of 10-30 centimeter were 58, 61.4 and 83.5 percent respectively in DDF comparison with GP. Concerning to the results, it seems that land use change can decrease soil quality and increase soil degradation and lead in undesirable consequences.

Keywords: Land use change, Soil degradation, Soil quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1016 Simulation and Validation of Spur Gear Heated by Induction using 3d Model

Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.

Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1015 A Study on the Removal of Trace Organic Matter in Water Treatment Procedures Using Powder-activated Carbon Biofilm

Authors: Rou-Han Lee, Jie, Chung Lou, Huang-Ming Fang

Abstract:

This study uses natural water and the surface properties of powdered activated carbon to acclimatize organics, forming biofilms on the surface of powdered activated carbon. To investigate the influence of different hydraulic retention times on the removal efficacy of trace organics in raw water, and to determine the optimal hydraulic retention time of a biological powdered activated carbon system, this study selects ozone-treated water processed by Feng-shan Advanced Water Purification Plant in southern Taiwan for the experiment. The evaluation indicators include assimilable organic carbon, dissolved organic carbon, and total organic carbon. The results of this study can improve the quality of drinking water treated using advanced water purification procedures.

Keywords: Water Purification Procedures, Biological Powdered Activated Carbon System, Assimilable Organic Carbon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1014 High Efficiency, Selectivity against Cancer Cell Line of Purified L-Asparaginase from Pathogenic Escherichia coli

Authors: Hazim Saadoon Aljewari, Mohammed Ibraheem Nader, Abdul Hussain M. Alfaisal, NatthidaWeerapreeyakul, Sahapat

Abstract:

L-asparaginase was extracted from pathogenic Escherichia coli which was isolated from urinary tract infection patients. L-asparaginase was purified 96-fold by ultrafiltration, ion exchange and gel filtration giving 39.19% yield with final specific activity of 178.57 IU/mg. L-asparaginase showed 138,356±1,000 Dalton molecular weight with 31024±100 Dalton molecular mass. Kinetic properties of enzyme resulting 1.25×10-5 mM Km and 2.5×10-3 M/min Vmax. L-asparaginase showed a maximum activity at pH 7.5 when incubated at 37 ºC for 30 min and illustrated its full activity (100%) after 15 min incubation at 20-37 ºC, while 70% of its activity was lost when incubated at 60 ºC. L-asparaginase showed cytotoxicity to U937 cell line with IC50 0.5±0.19 IU/ml, and selectivity index (SI=7.6) about 8 time higher selectivity over the lymphocyte cells. Therefore, the local pathogenic E. coli strains may be used as a source of high yield of L-asparaginase to produce anti cancer agent with high selectivity.

Keywords: L-asparaginase, Purification, Cytotoxicity, selectivity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
1013 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels

Authors: Mahmoud M. Tash

Abstract:

The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.

Keywords: Hot Forging, hot rolling, heat treatment, hardness (hv), impact toughness (j), microstructure, low alloy steels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
1012 Low Cost Technique for Measuring Luminance in Biological Systems

Authors: N. Chetty, K. Singh

Abstract:

In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.

Keywords: Tissue phantoms, scattering coefficient, albedo, low-cost method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1011 FengShui Paradigm as Philosophy of Sustainable Design

Authors: E. Erdogan, H. A. Erdogan

Abstract:

FengShui, an old Chinese discipline, dates back to more than 5000 years, is one of the design principles that aim at creating habitable and sustainable spaces in harmony with nature by systematizing data within its own structure. Having emerged from Chinese mysticism and embodying elements of faith in its principles, FengShui argues that the positive energy in the environment channels human behavior and psychology. This argument is supported with the thesis of quantum physics that ‘everything is made up of energy’ and gains an important place. In spaces where living and working take place with several principles and systematized rules, FengShui promises a happier, more peaceful and comfortable life by influencing human psychology, acts, and soul as well as the professional and social life of the individual. Observing these design properties in houses, workplaces, offices, the environment, and daily life as a design paradigm is significant. In this study, how FengShui, a Central Asian culture emanated from Chinese mysticism, shapes design and how it is used as an element of sustainable design will be explained.

Keywords: FengShui, design principle, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3413
1010 Blockchain for Decentralized Finance: Impact, Challenges and Remediation

Authors: Rishabh Garg

Abstract:

Blockchain technology can allow remote, untrusted parties in the banking and financial sector to reach consensus on the state of databases without the involvement of gatekeepers. Like a bookkeeper, it can manage all financial transactions including payments, settlements, fundraising, securities management, loans, credits and trade finance. It can outperform existing systems in terms of identity verification, asset transfers, peer-to-peer transfers, hedge funds, security and auditability. Blockchain-based decentralized finance (DeFi) is a new financial protocol. Being open and programmable, it enables various DeFi use-cases, including asset management, tokenization, tokenized derivatives, decentralized autonomous organizations, data analysis and valuation, payments, lending and borrowing, insurance, margin trading, prediction market, gambling and yield-farming, etc. In addition, it can ease financial transactions, cash-flow, use of programmable currency, no-loss lotteries, etc. This paper aims to assess the potential of decentralized finance by leveraging the blockchain-enabled Ethereum platform as an alternative to traditional finance. The study also aims to find out the impact of decentralized finance on prediction markets, quadratic funding and crowd-funding, together with the potential challenges and solutions associated with its implementation.

Keywords: Advance trading, crowd funding, exchange tokens, fund aggregation, margin trading, quadratic funding, smart contracts, streaming money, token derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329
1009 Simulation Based VLSI Implementation of Fast Efficient Lossless Image Compression System Using Adjusted Binary Code & Golumb Rice Code

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Simulation based VLSI Implementation of FELICS (Fast Efficient Lossless Image Compression System) Algorithm is proposed to provide the lossless image compression and is implemented in simulation oriented VLSI (Very Large Scale Integrated). To analysis the performance of Lossless image compression and to reduce the image without losing image quality and then implemented in VLSI based FELICS algorithm. In FELICS algorithm, which consists of simplified adjusted binary code for Image compression and these compression image is converted in pixel and then implemented in VLSI domain. This parameter is used to achieve high processing speed and minimize the area and power. The simplified adjusted binary code reduces the number of arithmetic operation and achieved high processing speed. The color difference preprocessing is also proposed to improve coding efficiency with simple arithmetic operation. Although VLSI based FELICS Algorithm provides effective solution for hardware architecture design for regular pipelining data flow parallelism with four stages. With two level parallelisms, consecutive pixels can be classified into even and odd samples and the individual hardware engine is dedicated for each one. This method can be further enhanced by multilevel parallelisms.

Keywords: Image compression, Pixel, Compression Ratio, Adjusted Binary code, Golumb Rice code, High Definition display, VLSI Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1008 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: Nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1007 High Temperature Deformation Behavior of Cr-containing Superplastic Iron Aluminide

Authors: Seok Hong Min, Woo Young Jung, Tae Kwon Ha

Abstract:

Superplastic deformation and high temperature load relaxation behavior of coarse-grained iron aluminides with the composition of Fe-28 at.% Al have been investigated. A series of load relaxation and tensile tests were conducted at temperatures ranging from 600 to 850oC. The flow curves obtained from load relaxation tests were found to have a sigmoidal shape and to exhibit stress vs. strain rate data in a very wide strain rate range from 10-7/s to 10-2/s. Tensile tests have been conducted at various initial strain rates ranging from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was obtained at the initial strain rate of 3×10-5/s and the maximum strain rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy. Microstructure observation through the optical microscopy (OM) and the electron back-scattered diffraction (EBSD) technique has been carried out on the deformed specimens and it has revealed the evidences for grain boundary migration and grain refinement to occur during superplastic deformation, suggesting the dynamic recrystallization mechanism. The addition of Cr by the amount of 5 at.% appeared to deteriorate the superplasticity of the binary iron aluminide. By applying the internal variable theory of structural superplasticity, the addition of Cr has been revealed to lower the contribution of the frictional resistance to dislocation glide during high temperature deformation of the Fe3Al alloy.

Keywords: Iron aluminide (Fe3Al), large grain size, structural superplasticity, dynamic recrystallization, chromium (Cr).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
1006 A High Accuracy Measurement Circuit for Soil Moisture Detection

Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi

Abstract:

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018
1005 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini

Abstract:

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1004 Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System

Authors: Xia Cui, Guang-wei Yuan, Jing-yan Yue

Abstract:

A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.

Keywords: Nonlinearity, iterative acceleration, coupled parabolic hyperbolic system, quadratic convergence, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1003 Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution

Authors: Sachin Kumar, Vivek Tiwari, Goutam Dutta

Abstract:

The paper investigates parallel channel instabilities of natural circulation boiling water reactor. A thermal-hydraulic model is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section and then, numerical analysis is carried out for parallel channel instabilities of the reactor undergoing both in-phase and out-of-phase modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core components and recirculation loop and then with the inclusion of the same. Numerical simulations are also conducted to determine the relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels are subjected to asymmetric power distribution keeping the inlet enthalpy same.

Keywords: Asymmetric power distribution, Density wave oscillations, In-phase and out-of-phase modes of instabilities, Natural circulation boiling water reactor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
1002 Fabrication and Electrical Characterization of Al/BaxSr1-xTiO3/Pt/SiO2/Si Configuration for FeFET Applications

Authors: Ala'eddin A. Saif , Z. A. Z. Jamal, Z. Sauli, P. Poopalan

Abstract:

The ferroelectric behavior of barium strontium titanate (BST) in thin film form has been investigated in order to study the possibility of using BST for ferroelectric gate-field effect transistor (FeFET) for memory devices application. BST thin films have been fabricated as Al/BST/Pt/SiO2/Si-gate configuration. The variation of the dielectric constant (ε) and tan δ with frequency have been studied to ensure the dielectric quality of the material. The results show that at low frequencies, ε increases as the Ba content increases, whereas at high frequencies, it shows the opposite variation, which is attributed to the dipole dynamics. tan δ shows low values with a peak at the mid-frequency range. The ferroelectric behavior of the Al/BST/Pt/SiO2/Si has been investigated using C-V characteristics. The results show that the strength of the ferroelectric hysteresis loop increases as the Ba content increases; this is attributed to the grain size and dipole dynamics effect.

Keywords: BST thin film, Electrical properties, Ferroelectrichysteresis, Ferroelectric FET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1001 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: Finite element analysis, soil-blade contact modeling, blade force, experimental results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
1000 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: Microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68
999 PetriNets Manipulation to Reduce Roaming Duration: Criterion to Improve Handoff Management

Authors: Hossam el-ddin Mostafa, Pavel Čičak

Abstract:

IETF RFC 2002 originally introduced the wireless Mobile-IP protocol to support portable IP addresses for mobile devices that often change their network access points to the Internet. The inefficiency of this protocol mainly within the handoff management produces large end-to-end packet delays, during registration process, and further degrades the system efficiency due to packet losses between subnets. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T is created. Finally, stand-alone performance simulations results from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-to-end packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure. Furthermore, it reported packets flow between subnets to improve packet losses between subnets.

Keywords: Cisco configuration, handoff, packet delay, Petri-Nets, registration process, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
998 A Block Cipher for Resource-Constrained IoT Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a layer between the encryption and decryption processes.

Keywords: Internet of Things, IoT, cryptography block cipher, s-box, key management, IoT security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
997 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neemoil (25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results from compressive strength analysis using HEICO Automatic Compression Testing Machine reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: Compressive strength, D. strictus bamboo, Ecofriendly treatment, neem oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
996 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads

Authors: Anas M. Fares

Abstract:

The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
995 Performance Evaluation of Complex Electrical Bio-impedance from V/I Four-electrode Measurements

Authors: Towfeeq Fairooz, Salim Istyaq

Abstract:

The passive electrical properties of a tissue depends on the intrinsic constituents and its structure, therefore by measuring the complex electrical impedance of the tissue it might be possible to obtain indicators of the tissue state or physiological activity [1]. Complete bio-impedance information relative to physiology and pathology of a human body and functional states of the body tissue or organs can be extracted by using a technique containing a fourelectrode measurement setup. This work presents the estimation measurement setup based on the four-electrode technique. First, the complex impedance is estimated by three different estimation techniques: Fourier, Sine Correlation and Digital De-convolution and then estimation errors for the magnitude, phase, reactance and resistance are calculated and analyzed for different levels of disturbances in the observations. The absolute values of relative errors are plotted and the graphical performance of each technique is compared.

Keywords: Electrical Impedance, Fast Fourier Transform, Additive White Gaussian Noise, Total Least Square, Digital De-Convolution, Sine-Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
994 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.

Keywords: Evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
993 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding (FSW), micro-hardness, underwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728