Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 148

Search results for: Curvilinear coordinate

148 Numerical Grid Generation of Oceanic Model for the Andaman Sea

Authors: Nitima Aschariyaphotha, Pratan Sakkaplangkul, Anirut Luadsong

Abstract:

The study of the Andaman Sea can be studied by using the oceanic model; therefore the grid covering the study area should be generated. This research aims to generate grid covering the Andaman Sea, situated between longitudes 90◦E to 101◦E and latitudes 1◦N to 18◦N. A horizontal grid is an orthogonal curvilinear with 87 × 217 grid points. The methods used in this study are cubic spline and bilinear interpolations. The boundary grid points are generated by spline interpolation while the interior grid points have to be specified by bilinear interpolation method. A vertical grid is sigma coordinate with 15 layers of water column.

Keywords: Sigma Coordinate, Curvilinear Coordinate, AndamanSea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
147 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: Curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
146 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
145 A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid

Authors: R. M. Barron, B. Zogheib

Abstract:

A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.

Keywords: Curvilinear, finite difference, finite volume, SIMPLE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3131
144 The Euler Equations of Steady Flow in Terms of New Dependent and Independent Variables

Authors: Peiangpob Monnuanprang

Abstract:

In this paper we study the transformation of Euler equations  1 , u u u Pf t (ρ ∂) + ⋅∇ = − ∇ + ∂ G G G G ∇⋅ = u 0, G where (ux, t) G G is the velocity of a fluid, P(x, t) G is the pressure of a fluid andρ (x, t) G is density. First of all, we rewrite the Euler equations in terms of new unknown functions. Then, we introduce new independent variables and transform it to a new curvilinear coordinate system. We obtain the Euler equations in the new dependent and independent variables. The governing equations into two subsystems, one is hyperbolic and another is elliptic.

Keywords: Euler equations, transformation, hyperbolic, elliptic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
143 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.

Keywords: Curved stretching sheet, finite difference method, MHD, variable thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
142 Two-dimensional Heat Conduction of Direct Cooling in the Rotor of an Electrical Generator(Numerical Analysis)

Authors: A. Kargar, A. Kianifar, H. Mohammadiun

Abstract:

Two-dimensional heat conduction within a composed solid material with a constant internal heat generation has been investigated numerically in a sector of the rotor a generator. The heat transfer between two adjacent materials is assumed to be purely conduction. Boundary conditions are assumed to be forced convection on the fluid side and adiabatic on symmetry lines. The control volume method is applied for the diffusion energy equation. Physical coordinates are transformed to the general curvilinear coordinates. Then by using a line-by-line method, the temperature distribution in a sector of the rotor has been determined. Finally, the results are normalized and the effect of cooling fluid on the maximum temperature of insulation is investigated.

Keywords: general curvilinear coordinates , jacobian, controlvolume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
141 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation

Authors: M. Zamani, O. Kahar

Abstract:

Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.

Keywords: Navier-Stokes, 'Non-linear grid system', Splitting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
140 Steganalysis of Data Hiding via Halftoning and Coordinate Projection

Authors: Woong Hee Kim, Ilhwan Park

Abstract:

Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.

Keywords: Steganography, steganalysis, digital halftoning, data hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
139 The influence of Local Export Externalities and Firm International Experience on Export Performance

Authors: Isabel Díez Vial, Marta Fernández Olmoss

Abstract:

This research tries to analyze the role that knowledge about foreign markets has in increasing firms- exports in clustered spaces. We consider two interrelated sources of knowledge: firms- direct experience and indirect experience from other clustered firms – export externalities. In particular, it is proposed that firms would improve their export performance by accessing to export externalities if they have some previous direct experience that allows them to identify, understand and exploit them. Also, we propose that this positive influence of previous direct experience on export externalities keeps only up to a point, where it becomes negative, creating an inverted “U" shape. Empirical evidence gathered among wine producers located in La Rioja tends to confirm that firms enjoy of export externalities if they have export experience along several years and countries increase their export performance. While this relationship becomes less relevant as they develop a higher experience, we could not confirm the existence of a curvilinear relationship in their influence on export externalities and export performance.

Keywords: Clusters, curvilinear relationship, absorptive capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
138 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures

Authors: Réka Sárközi, Péter Iványi, Attila B. Széll

Abstract:

The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.

Keywords: Parametric design, structural morphology, space structures, spherical coordinate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
137 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen

Abstract:

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
136 Influence of Replacement Used Reference Coordinate System for Georeferencing of the Old Map of Europe

Authors: Jakub Havlicek, Jiri Cajthaml

Abstract:

The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. The map was georeferenced into three types of projection – the equal-area conic (original cartographic projection), cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation.

Keywords: Georeferencing, reference coordinate system, transformation, standard deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
135 Tsunami Inundation Modeling in a Boundary Fitted Curvilinear Grid Model Using the Method of Lines Technique

Authors: M. Ashaque Meah, M. Shah Noor, M Asif Arefin, Md. Fazlul Karim

Abstract:

A numerical technique in a boundary-fitted curvilinear grid model is developed to simulate the extent of inland inundation along the coastal belts of Peninsular Malaysia and Southern Thailand due to 2004 Indian ocean tsunami. Tsunami propagation and run-up are also studied in this paper. The vertically integrated shallow water equations are solved by using the method of lines (MOL). For this purpose the boundary-fitted grids are generated along the coastal and island boundaries and the other open boundaries of the model domain. A transformation is used to the governing equations so that the transformed physical domain is converted into a rectangular one. The MOL technique is applied to the transformed shallow water equations and the boundary conditions so that the equations are converted into ordinary differential equations initial value problem. Finally the 4th order Runge-Kutta method is used to solve these ordinary differential equations. The moving boundary technique is applied instead of fixed sea side wall or fixed coastal boundary to ensure the movement of the coastal boundary. The extent of intrusion of water and associated tsunami propagation are simulated for the 2004 Indian Ocean tsunami along the west coast of Peninsular Malaysia and southern Thailand. The simulated results are compared with the results obtained from a finite difference model and the data available in the USGS website. All simulations show better approximation than earlier research and also show excellent agreement with the observed data.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
134 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul

Abstract:

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Keywords: Variational method, postbuckling, finite element method, intrinsic coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
133 Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions

Authors: Saleh A. Al-Jufout

Abstract:

This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.

Keywords: Mathematical Modelling, Radial Power System, Steady-State, Transients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
132 Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis

Authors: D. Maneetham, L. Sivhour

Abstract:

Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.

Keywords: Forward kinematics, D-H model, robotic toolbox, PC-and EtherCAT based control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
131 Terrain Evaluation Method for Hexapod Robot

Authors: Tomas Luneckas, Dainius Udris

Abstract:

In this paper a simple terrain evaluation method for hexapod robot is introduced. This method is based on feet coordinate evaluation when all are on the ground. Depending on the feet coordinate differences the local terrain evaluation is possible. Terrain evaluation is necessary for right gait selection and/or body position correction. For terrain roughness evaluation three planes are plotted: two of them as definition points use opposite feet coordinates, third coincides with the robot body plane. The leaning angle of body plane is evaluated measuring gravity force using three-axis accelerometer. Terrain roughness evaluation method is based on angle estimation between normal vectors of these planes. Aim of this work is to present a simple method for embedded robot controller, allowing to find the best further movement settings.

Keywords: Hexapod robot, pose estimation, terrain evaluation, terrain roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
130 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
129 An Interference Reduction Strategy for TDD-OFDMA Cellular Systems

Authors: Koudjo M. Koumadi, Kester Quist-Aphetsi, Robert A. Sowah, Amevi Acakpovi

Abstract:

Downlink/Uplink (DL/UL) time slot allocation (TSA) in time division duplex (TDD) systems is generally uniform for all the cells. This TSA however is not efficient in case of different traffic asymmetry ratios in different cells. We first propose a new 3-coordinate architecture to identify cells in an orthogonal frequency division multiple access (OFDMA) system where each cell is divided into three sectors. Then, this coordinate system is used to derive a TSA for symmetric traffic. Mathematical analysis and simulations are used to show that the proposed TSA outperforms the traditional all uniform type of TSA in terms of total intercellular interference, even under uniform symmetrical traffic. Two adaptation strategies are further proposed to adjust the proposed TSA to asymmetrical traffic with different DL/UL traffic ratios in different cells. Further simulation results show that the adaptation strategies also yield higher signal-to-interference ratio (SIR).

Keywords: Crossed TSA, different-entity interference, same-entity interference, uniform TSA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
128 Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformation, directional derivatives, edge enhancement, hyperbolic tangent function, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
127 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang

Abstract:

The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
126 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
125 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: Motion planning, SCARA robot, trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
124 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
123 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
122 Hiding Data in Images Using PCP

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

In recent years, everything is trending toward digitalization and with the rapid development of the Internet technologies, digital media needs to be transmitted conveniently over the network. Attacks, misuse or unauthorized access of information is of great concern today which makes the protection of documents through digital media a priority problem. This urges us to devise new data hiding techniques to protect and secure the data of vital significance. In this respect, steganography often comes to the fore as a tool for hiding information. Steganography is a process that involves hiding a message in an appropriate carrier like image or audio. It is of Greek origin and means "covered or hidden writing". The goal of steganography is covert communication. Here the carrier can be sent to a receiver without any one except the authenticated receiver only knows existence of the information. Considerable amount of work has been carried out by different researchers on steganography. In this work the authors propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by selecting the embedding pixels using some mathematical function and then finds the 8 neighborhood of the each selected pixel and map each bit of the secret message in each of the neighbor pixel coordinate position in a specified manner. Before embedding a checking has been done to find out whether the selected pixel or its neighbor lies at the boundary of the image or not. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.

Keywords: Cover Image, LSB, Pixel Coordinate Position (PCP), Stego Image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
121 Construction of Attitude Reference Benchmark for Test of Star Sensor Based on Precise Timing

Authors: Tingting Lu, Yonghai Wang, Haiyong Wang, Jiaqi Liu

Abstract:

To satisfy the need of outfield tests of star sensors, a method is put forward to construct the reference attitude benchmark. Firstly, its basic principle is introduced; Then, all the separate conversion matrixes are deduced, which include: the conversion matrix responsible for the transformation from the Earth Centered Inertial frame i to the Earth-centered Earth-fixed frame w according to the time of an atomic clock, the conversion matrix from frame w to the geographic frame t, and the matrix from frame t to the platform frame p, so the attitude matrix of the benchmark platform relative to the frame i can be obtained using all the three matrixes as the multiplicative factors; Next, the attitude matrix of the star sensor relative to frame i is got when the mounting matrix from frame p to the star sensor frame s is calibrated, and the reference attitude angles for star sensor outfield tests can be calculated from the transformation from frame i to frame s; Finally, the computer program is finished to solve the reference attitudes, and the error curves are drawn about the three axis attitude angles whose absolute maximum error is just 0.25ÔÇ│. The analysis on each loop and the final simulating results manifest that the method by precise timing to acquire the absolute reference attitude is feasible for star sensor outfield tests.

Keywords: Atomic time, attitude determination, coordinate conversion, inertial coordinate system, star sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
120 A New Method for Computing the Inverse Ideal in a Coordinate Ring

Authors: Abdolali Basiri

Abstract:

In this paper we present an efficient method for inverting an ideal in the ideal class group of a Cab curve by extending the method which is presented in [3]. More precisely we introduce a useful generator for the inverse ideal as a K[X]-module.

Keywords: Cab Curves, Ideal Class Group

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
119 A Modular On-line Profit Sharing Approach in Multiagent Domains

Authors: Pucheng Zhou, Bingrong Hong

Abstract:

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.

Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380