Search results for: Progressive damage modeling
2319 Analysis of Acoustic Emission Signal for the Detection of Defective Manufactures in Press Process
Authors: Dong Hun Kim, Won Kyu Lee, Sok Won Kim
Abstract:
Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena become the cause of not only defective product but also damage of a press mold. In order to solve this problem AE system was introduced. AE system was expected to be very effective to real time detection of the defective product and to prevention of the damage of the press molds. In this study, for pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For analysis and processing the AE signals picked in real time from the good or bad products, specialized software called cdm8 was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight and thickness of metal sheet and process type.Keywords: press, acoustic emission, signal processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16312318 On the Application of Meta-Design Techniques in Hardware Design Domain
Authors: R. Damaševičius
Abstract:
System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.Keywords: Design patterns, meta-design, meta-modeling, metaprogramming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23152317 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.
Keywords: Knowledge representation, reasoning, ontology, class diagram, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10422316 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite – A Molecular Dynamics Analysis
Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar
Abstract:
Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular / nanoscale models is demonstrated.
Keywords: Cement composite, Mechanical Properties, Molecular Dynamics, Plasticizer additives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25682315 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29702314 Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts
Authors: Samy E. Oraby, Ayman M. Alaskari
Abstract:
The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.Keywords: Mathematical modeling, Cutting forces, Frictionforces, Friction coefficient and Chip ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31252313 Variability of Covariance of Selected Skeletal Diameters of Female in a Longitudinal Physical Training Programme
Authors: Dhananjoy Shaw, Seema Sharma (Kaushik)
Abstract:
Anthropometry helps in associating the physical properties of an individual with their racial, cultural, and psychological attributes. Numerous research studies have included different skeletal diameters as a variable. However, most of the studies suggest their inclusion describing specific characteristics/traits of the body. However, there seems to be a scarcity of literature related to the effect of any kind of longitudinal physical training on human skeletal diameters. Hence, the present investigation was conducted to study the variability of covariance of selected skeletal diameters of females in a longitudinal physical training programme. The sample for the study was 78 college going students of the University of Delhi, classified equally in three groups, i.e. viz. (a) Progressive load of training or conditioning group coded as PLT; (b) Constant load of training or non-conditioning group coded as CLT; and (c) No-load or control or sedentary group coded as NL. Collectively, mean age of the sample was 19.54±1.79 years. The randomly selected samples were given maximum consideration to maintain their homogeneity. The variables included biacromial diameter, biiliocristal diameter, bitrochantaerion diameter, humeral bicondylar, femoral bicondylar, wrist diameter, ankle diameter, and foot breadth. Multi-group repeated measure design was adopted for the experimentation. Each group was measured four times after completion of each of the three meso-cycles of six-weeks duration. The measurements were taken following the standard landmarks and procedures. Mean, standard deviation, analysis of co-variance and its post-hoc analysis were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the selected skeletal diameters of females. It also reflected the increase due to growth also along with training.
Keywords: Longitudinal, physical training, skeletal diameters, step progression load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6272312 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks
Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar
Abstract:
Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.
Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29042311 Generating Qualitative Causal Graph using Modeling Constructs of Qualitative Process Theory for Explaining Organic Chemistry Reactions
Authors: Alicia Y. C. Tang, Rukaini Abdullah, Sharifuddin M. Zain, Noorsaadah A. Rahman
Abstract:
This paper discusses the causal explanation capability of QRIOM, a tool aimed at supporting learning of organic chemistry reactions. The development of the tool is based on the hybrid use of Qualitative Reasoning (QR) technique and Qualitative Process Theory (QPT) ontology. Our simulation combines symbolic, qualitative description of relations with quantity analysis to generate causal graphs. The pedagogy embedded in the simulator is to both simulate and explain organic reactions. Qualitative reasoning through a causal chain will be presented to explain the overall changes made on the substrate; from initial substrate until the production of final outputs. Several uses of the QPT modeling constructs in supporting behavioral and causal explanation during run-time will also be demonstrated. Explaining organic reactions through causal graph trace can help improve the reasoning ability of learners in that their conceptual understanding of the subject is nurtured.Keywords: Qualitative reasoning, causal graph, organicreactions, explanation, QPT, modeling constructs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192310 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant
Authors: G. Zahedi, H. Yaghoobi
Abstract:
Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.Keywords: Dehydrogenation, fixed bed reactor, modeling, linear alkyl benzene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30282309 Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species
Authors: Wagdi S. Soliman, Shu-ichi Sugiyama
Abstract:
The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.Keywords: C3 species, Fv/Fm, heat stress, oxidative stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17562308 Wind Farm Modeling for Steady State and Dynamic Analysis
Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni
Abstract:
This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46242307 Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant
Authors: Thitiporn Supasri, Natanee Vorayos, Piriya Thongchiew
Abstract:
Electrification is a complex process and governed by various parameters. Modeling of power plant’s target efficiency or target heat rate is often formulated and compared with the actual values. This comparison not only implies the performance of the power plant but also reflects the energy losses possibly inherited in some of related equipment and processes. The current modeling of Coal-fired Mae Moh power plant was formulated at the first commissioning. Some of equipments were replaced due to its life time. Relatively outdated for 20 years, the utilization of the model is not accomplished. This work has focused on the development of the performance analysis model of aforementioned power plant according to the most updated and current working conditions. The model is more appropriate and shows accuracy in its analysis. Losses are detected and measures are introduced such that reduction in energy consumption, related cost, and also environment impacts can be anticipated.
Keywords: Performance analysis model, Power plant modeling, Target heat rate, Target efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23302306 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822305 The Fatigue Damage Accumulation on Systems of Concentrators
Authors: Alexander Urbach, Mukharbij Banov, Vladislav Turko
Abstract:
Fatigue tests of specimen-s with numerous holes are presented. The tests were made up till fatigue cracks have been created on both sides of the hole. Their extension was stopping with pressed plastic deformation at the mouth of the detected crack. It is shown that the moments of occurrence of cracks on holes are stochastically dependent. This dependence has positive and negative correlation relations. Shown that the positive correlation is formed across of the applied force, while negative one – along it. The negative relationship extends over a greater distance. The mathematical model of dependence area formation is represented as well as the estimating of model parameters. The positive correlation of fatigue cracks origination can be considered as an extension of one main crack. With negative correlation the first crack locates the place of its origin, leading to the appearance of multiple cracks; do not merge with each other.Keywords: Correlation analysis, fatigue damage accumulation, local area, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15762304 Modeling and Simulation of a Hybrid Scooter
Abstract:
This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.
Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33452303 Computer Modeling of Drug Distribution after Intravitreal Administration
Authors: N. Haghjou, M. J. Abdekhodaie, Y. L. Cheng, M. Saadatmand
Abstract:
Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular concentrations and pharmacokinetics of intravitreally injected drugs. A finite volume model was created to predict distribution of two drugs with different physiochemical properties in the rabbit eye. The model parameters were obtained from literature review. To validate this numeric model, the in vivo data of spatial concentration profile from the lens to the retina were compared with the numeric data. The difference was less than 5% between the numerical and experimental data. This validation provides strong support for the numerical methodology and associated assumptions of the current study.
Keywords: Posterior segment, Intravitreal injection (IVI), Pharmacokinetic, Modelling, Finite volume method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24472302 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers
Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho
Abstract:
In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.
Keywords: Plate heat exchanger, optimization, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19612301 Numerical Modeling of the Depth-Averaged Flow Over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.
Keywords: Depth-averaged equations, numerical modeling, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432300 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48112299 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice
Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani
Abstract:
In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.Keywords: Breast cancer, compartmental modeling, 177Lu, dosimetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7472298 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications
Authors: Arpan Dwivedi, Yogesh Pahariya
Abstract:
In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.
Keywords: SAPS, DG, PMWTG, rural area, off grid, PV module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8462297 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11872296 Urban Search and Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures
Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia
Abstract:
Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result there is always a risk that they themselves could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of structural damage that may been countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to better judge and quantify risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk, so that they themselves do not become victims.
Keywords: Damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31202295 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process
Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari
Abstract:
Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.Keywords: UML, component, fragment, agile, SPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9172294 A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System
Authors: Ji-Hye Kim, Sung-Gaun Kim
Abstract:
Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESimKeywords: Power steering system, Electro-Hydraulic power steering (EHPS) system, Modeling of EHPS system, Analysis modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27072293 Architectural Acoustic Modeling for Predicting Reverberation Time in Room Acoustic Design Using Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents architectural acoustic modeling to estimate reverberation time in room acoustic design using multiple criteria decision making analysis. First, fundamental decision criteria were determined to evaluate the reverberation time in the room acoustic design problem. Then, the proposed model was applied to a practical decision problem to evaluate and select the optimal room acoustic design model. Finally, the optimal acoustic design of the rooms was analyzed and ranked using a multiple criteria decision making analysis method.
Keywords: Architectural acoustics, room acoustics, architectural acoustic modeling, reverberation time, room acoustic design, multiple criteria decision making analysis, decision analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5512292 Elasto-Visco-Plastic-Damage Model for Pre-Strained 304L Stainless Steel Subjected to Low Temperature
Authors: Jeong-Hyeon Kim, Ki-Yeob Kang, Myung-Hyun Kim, Jae-Myung Lee
Abstract:
Primary barrier of membrane type LNG containment system consist of corrugated 304L stainless steel. This 304L stainless steel is austenitic stainless steel which shows different material behaviors owing to phase transformation during the plastic work. Even though corrugated primary barriers are subjected to significant amounts of pre-strain due to press working, quantitative mechanical behavior on the effect of pre-straining at cryogenic temperatures are not available. In this study, pre-strain level and pre-strain temperature dependent tensile tests are carried to investigate mechanical behaviors. Also, constitutive equations with material parameters are suggested for a verification study.
Keywords: Constitutive equation, corrugated sheet, pre-strain effect, elasto-visco-plastic-damage model, 304L stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342291 Oxidation of Carbon Monoxide in a Monolithic Reactor
Authors: S. Chauhan, T.P.K. Grewal, S.K. Aggarwal, V.K. Srivastava
Abstract:
Solution for the complete removal of carbon monoxide from the exhaust gases still poses a challenge to the researchers and this problem is still under development. Modeling for reduction of carbon monoxide is carried out using heterogeneous reaction using low cost non-noble metal based catalysts for the purpose of controlling emissions released to the atmosphere. A simple one-dimensional model was developed for the monolith using hopcalite catalyst. The converter is assumed to be an adiabatic monolith operating under warm-up conditions. The effect of inlet gas temperatures and catalyst loading on carbon monoxide reduction during cold start period in the converter is analysed.Keywords: carbon monoxide, catalytic, modeling, monolith
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15712290 Investigation of Tbilisi City Atmospheric Air Pollution with PM in Usual and Emergency Situations Using the Observational and Numerical Modeling Data
Authors: N. Gigauri, V. Kukhalashvili, V. Sesadze, A. Surmava, L. Intskirveli
Abstract:
Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.
Keywords: Air pollution, numerical modeling, PM2.5, PM10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577