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Leudeking-Piret Model in the Kinetic Modeling
of Microbial Production of Pol-
Hydroxybutyrate
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and it is accumulated as an intracellular carbod emnergy

Abstract—Poly$-hydroxybutyrate (PHB) is one of the moststorage granules. Many of its chemical and physiocaperties

famous biopolymers that has various applicationgrioduction of

biodegradable carriers. The most important strategyenhancing
efficiency in production process and reducing thiegoof PHB, is the
accurate expression of kinetic model of productsmfdgion and
parameters that are effective on it, such as Diy \@eight (DCW)

and substrate consumption. Considering the highatibifles of

artificial neural networks in modeling and simutettiof non-linear
systems such as biological and chemical industties mainly are
multivariable systems, kinetic modeling of micrdbgoduction of

PHB that is a complex and non-linear biologicalgess, the three
layers perceptron neural network model was usedhis study.

Artificial neural network educates itself and fintte hidden laws
behind the data with mapping based on experimeiatal, of dry cell
weight, substrate concentration as input and PHEceatration as
output. For training the network, a series of eipental data for
PHB production fromHydrogenophaga Pseudoflavay glucose
carbon source was used. After training the netwdwkp other

experimental data sets that have not intervenedhé network
education, including dry cell concentration and sirdie

concentration were applied as inputs to the netward PHB

concentration was predicted by the network. Consparof predicted
data by network and experimental data, indicatddga precision
predicted for both fructose and whey carbon sourkls® in present
study for better understanding of the ability ofureé network in

modeling of biological processes, microbial prodwttkinetic of

PHB by Leudeking-Piret experimental equation wadeted. The
Observed result indicated an accurate prediction RIfiB

concentration by artificial neural network highdérah Leudeking-
Piret model.

Keywords—Kinetic Modeling, PolyB-Hydroxybutyrate (PHB),
Hydrogenophaga Pseudoflava Artificial Neural Network,
Leudeking-Piret

I. INTRODUCTION

make it superior to polymers such as polyethylema a
polypropylene [1], but it has high production codthas a
wide variety of applications in biodegradable si
production for medicines and insecticides, surgjmas and
sutures, food packaging films, nano-composites
disposable cosmetic products and also it possesigatar
physical and structural properties with petrochetnicased
synthetic polymers such as polyethylene (PE)
polypropylene (PP), but it has two main advantagespared
with synthetic plastics: one, biodegradability ahd other , it
is produced from renewable resource [11]. Effontghe last
two decades were concentrated on identifying bizcter
producing these polymers; their metabolic pathways
consideration and production of these compounds fiteese
bacteria were identified as well as the kind oftbaa and
various conditions of culture media which are thaim
determinant factors in amount and type of polymidi.[

One significant feature in microbial productionRIflA’s is
production by use of renewable carbon sources. €uional
plastics made from petroleum have very low degiadattes
but PHA's produced by renewable resources suchugars
and vegetable oils that is irrelevant to atmosph€®
consumption as carbon source. Also, various wastiennals
are capable for using as carbon sources in praxuatif
PHA'’s such as whey, molas, glucose, and fructossilable
carbon source of microorganisms is one of the nfiadtors
that will determine the type of PHA'’s product [8],

Commercial production of Polg-hydroxybutyrate is
developing, but price of this polymer is high ant$ i
production efficiency is too low in comparison with

and

and

OLY B-hydroxybutyrate (PHB) is a polyester belonging t@etrochemical based plastics. These two factorsnapertant

polyhydroxyalkanoics acids family that is synthesiby a
wide variety of different microorganism under sgresndition
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weak points in the pathway development of Bdly-
hydroxybutyrate compared with synthetic polymershsas
polyethylene and polypropylene. Widespread productind
use of biopolymers depends on reducing productiod a
process costs [10].

Enhancing the efficiency of PHB production process
involves precise expression of production kinetiodel and
its effective parameters, including dry cell weigptoduct
concentration and substrate consumption. The maitiesth
model can able of analyzing data and creating aegy to
resolve fermentation and product formation isswes] also
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being informative about fermentation process knstiould
have the potential to increase production efficjeize, 3, 5].
In this study the kinetic of microbial productiof Roly-3-
hydroxybutyrate has been modeled by three layersep&on
neural network and
Leudeking-Piret experimental model.

Il. ARTIFICIAL NEURAL NETWORKS

Nowadays, artificial neural networks have showrirthigyh
abilities in many applications. These networks hdeen
created based on biological model of animals’ brainfact,
the artificial neural networks are the data procgssystems
of the information that possess particular impletaton
feature similar to animal neural networks, and héesn
existed from generalization of their mathematicadels [10].

These networks are model-free intelligent dynargatesns
based on experimental data that by processing ke lthve

The outputs of first layer, form the input vectdr second
layer, and so the output vectors of the second lmake the
inputs of third layer, and the outputs of the tHagler are the
desired answer of the network [10 , 12].

results have been compared withAmong all the important properties of neural netvgoithe

learning property is very important. Neural netwsrks
learning systems are able to learn from their pagterience
and environment and improve their behavior durireghe
learning stage. Improvement in learning during tirae
should be measured based on the criterion; impreuéraf
criterion’s models is the target of learning systerearning
law by recursive equations, are generally expresasd
differential equations. This recursive equationg aalled
learning laws. Learning law is a process which Wweignatrix
and bias vectors of neural network are set. Theddil@arning
laws is to train the neural network to perform aafic act,
and in other words, artificial neural network dugyitraining

transmitted hidden laws behind the data to the oBtw || be more aware about environment, conditiond aim of

structure. Artificial neural network based on nuioardata or
example calculation, learn general rules and tryntael the
neuro-synaptic structure of human brain [10].

Artificial neural networks have two basic propesti®ne,
mapping based on experimental data (ability anemmyt of
generalizability) and other, parallel structurdigili

These are suitable and applicable
simulation of systems, especially in hon-lineartays such as
chemical and biochemical industries that are maiiable
systems with many state variables. In other wardadaptive
systems, particularly when the process under siadyery
complex, artificial neural networks provide appiape
solutions [12].

in modeling and

its act after each iteration of learning algoritfi8].

The learning in multi-layer perceptron neural netwis
done by minimizing mean squares errors of outpufplying
backpropagation learning algorithm and by use chetical
iteration methods.

IV. NEURAL NETWORK PROPERTIES

In this study, a three layers perceptron neuravoet was
applied for microbial production modeling of pdly-
hydroxybutyrate byHydrogenophaga PseudoflavDSMZ
1034), with two neurons in input layer for DCW centration
and substrate concentration, two neurons in hiddger and
one neuron in output layer for PHB concentratiomn&al

Neuron: the smallest unit of information processing thatviews of this network is shown in Fig. 1.

forms the basis of neural network functions.

Transfer Function:Transfer functionf can be linear or
non-linear. A transfer function is selected basadsolving a
specific problem (an issue that is supposed todbeed by
neural network).

Network Training:Adjusting the communication weights of

neurons per received various examples with the gbdhe
network output to converge towards the desiredwiutp

lll.  MULTI-LAYERS PERCEPTRON(MLP) NEURAL NETWORK

Perceptron neural networks,
perceptron, is one of the most practical neuralvagks. This
network is capable of selecting the appropriate lmemof
layers and neurons, which are not often too ladgéng the
non-linear mapping with arbitrary precision. Théswhat in
many engineering issues is proposed as the maiticolfor
data modeling. The neurons in a level, form a layreover,
each layer possess weight that indicates the effédivo
neurons on each other. These networks are fed-fdrwa
means that each neuron in each layer is connectetl the
neurons in preceding layers. These networks areviknas
interconnected. The mentioned network, actually bhaen
created by joining three single layer perceptranse input
layer, middle layer (hidden layer) and the thirebigput layer.
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DCW
Concentration

PHB
Concentration
Substrate
Concentration
L S
Input Layer Hidden Layer ~ Output Layer

Fig. 1 The three layers perceptron neural networlpfoduction
modeling of PHB

specially multi-layer Number of hidden layer neurons was determined by

experimental method and with regards to minimum rmea
squares error (MSE) for prediction of PHB conceitraby
neural network as compared with experimental daig. 2
shows the relationship between number of neurodsSVsE.
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= MSE
0.020

0.018
0.016

0.014

TABLE |
THE RESULTSOF PHB CONCENTRATIONPREDICTED BY NEURAL NETWORK
By FRUCTOSECARBON SOURCE

Mean Squares Error Sum Squares Error

0.012

0.010

0.008

Mean Squares Errors

0.006

0.004

0.002

]

(MSE) (SSE) Regression
0.0012 0.0105 0.99849
TABLE Il

THE RESULTS OFPHB CONCENTRATION PREDICTED BY NEURAL NETWORK BY
WHEY CARBON SOURCE

Mean Squares Error
(MSE)

Sum Squares Error

(SSE) Regression

8.14% 10° 7.33x 10* 0.99998

0.000 T T T T T T

2 3 4 5 6 7 8
Number of Neurons

Fig. 2 Determination of number of hidden layer'sirons

This network is feed-forward and for training thetwork
back-propagation  Levenberg-Marquardt
applied. Also the used sigmoid transfer functionrfeurons is
expressed as follows:

1
- (1)
1+e
In this study was used MATLAB (V.2010a 7.10) softeva
to design the neural network and related calculaticand
Sigmaplot (11.0) software for data analyzing andpgr
drawing.

a=

V. MODELING AND DISCUSSION
In the present study, for Poftydroxybutyrate (PHB)

In the present study for better understanding adfirale
networks abilities in modeling and simulation obloigical
process, the kinetic of microbial production of Yy}
hydroxybutyrate (PHB) byHydrogenophaga Pseudoflava

algorithm ~ wagacteria and by using fructose and whey carboncssuythe

Leudeking-Piret model (Eq. 2) is used for kinetialysis of
PHB production and the obtained results were coetpaith
neural network predictions.
dpP dx
— = —+ 2
dt dt Px @

Wherea andp are the associated and non associated growth
factor respectivelyXand p show the concentration of dry cell
weight (DCW) and produced polymer (PHB) concentratias
well.

The combined Logistic and Malthus equations wasl use
show the microbial growth kinetics. The Logisticuation was

production modeling was used an experimental data Used for showing the exponential growth phase iisethile

including dry cell weight concentration (DCW), strase

Malthus kinetics was used to express the deathepkiastics

concentration and PHB concentration which was prediby (Egs. 3 and 4)

Hydrogenophaga Pseudoflava bacteria and
consumption as carbon source,
conditions. This data set as training data wasiegpb a three
layers perceptron neural network with propertieexwressed
in the previous section. At the end of traininggstatwo other

experimental data sets (Figs. 3 and 5) that did mete

intervene in the network educating, includon DCWd an

substrate  concentration that was  produced

Hydrogenophaga Pseudoflabacteria and fructose and whey

carbon sources, were used separately as inputedpidithe
network and predicted the values for PHB conceiotngfrom
the network’s output. Then the predicted values FbB
concentration by neural
experimental values and also the relevant diagtzeme been

glucose
under certain latrgrat

dx X
— = 1-—)x
pm Hin Xm) (3)
dx
PTEREaRs (4)
Integration equation 5 and 6, will yield equati@nand 6.
Xo €X t
bil((t) - ~ 0 pcum ) <t (5)
[1- (C2)Q-expm )] "
Xm
X
In(—) = ut >ty (6)
Xo

network was compared with Where X,,X and {  are the initial DCW or biomass

concentration, maximum biomass concentration and

drawn. From Figs. 4 and 6 we can clearly see th#B P yayimum specific growth rate of the microorganism,

concentration values with high accuracy has beedigted by
neural network. The predicted values for PHB cotregion

respectively. Also, .t is the required time (seed age) for
maximum produced PHB concentration by the microoigya.

MSE=0.0012 and regression R=0.99849 in comparisitin w

experimental values (Table 1).

Neural network prediction by whey carbon sourcespes
highest accuracy and lowest deviation compared
experimental data with MSE=8.¥4.0° and R=0.99998
(Table 11).
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Hm, @ plot of In against t will yield a straight line

m

to
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that the value of its the slope correspondstqgand the

TABLE IV
THE LEUDEKING-PIRET MODEL PARAMETERS FOR PHB PRODUCTIONBY USE
OF WHEY CARBON SOURCE

intercept equals td:n(ﬁ -1 .
Xo

X X Parameter Logistic Model Malthus Model
In = fpt —In(=" -1 (7)
Xm ~ X Xo Hm 0.125 -0.015
The resulting graph obtained from kinetic modelofgeell a 0.155 51746
growth by combination of Logistic and Malthus maielre ' '
shown in Figs. 7 and 8. 0.0002769 0.0002769
Substituting Eq. (3) and (5) into Eq. (2) and im&gng, will
yield Eq. (8).
(8) VI. CONCLUSION
_ exp(tmt) We believe that use of artificial neural networks i
P(t)=R+ax %o -1 modeling and simulation of biological and chemipedcesses
[1- () A-expyt))] that mainly are complex with multi-parametric ardfar, not
*m presented a certain experimental and kinetic méatethose
Xm _Xovp_ processes can be very effective and instrumenmtahis study,
+,3—m In1 (Z)(l exp(Umt)) were observed that by using a three layers pemepteural
Eq. (8) can be rewritten as Eq. (9) network can be predict the Pdihydroxybutyrate (PHB)
P(t) = P, +aA(t) + AB(t) ©) concentration with high precision and mean squaesr

The value of% is equal to zero andX =X in the
stationary phase. Using Egs. (2) and (9), one taairo

dpP
. m (st.phasg (10)

Xm

MSE=0.0012 for fructose carbon source and MSE=8 1&"°
for whey carbon source.

The use of artificial neural networks technique dam
predict the results and outputs of process withh ligecision
before it is implemented as practical, as well.0Althis can
saving the process cost and runtime. And a gewoetédok of
the process investigated before implementatiorrdsearcher

The value of x,, can be obtained from the experimentafo make decision and judgment. In the present stlihetic

growth kinetic data and the value of parametgras obtained
from the slope of the linear plot ofP(t) - R, — /B against
At) .

Eqg. (8) and (11) show the kinetic model of PHB prcttbn
in the exponential growth phase and death phaspectively.

P(t) = P, +ax, exp(ut) + ﬁ%exp(,u.t) (11)

=Py +aA(t) + £B(t)

The Leudeking-Piret model parameters obtained se a
given in tables 3 and 4. The resulting graph oleifrom
kinetic modeling of PHB production by Leudekingdir
model are shown in Figs. 9 and 10, as well.

TABLE Il
THE LEUDEKING-PIRET MODEL PARAMETERS FORPHB PRODUCTION BY USE
OF FRUCTOSE CARBON SOURCE

Parameter Logistic Model Malthus Model
Hm 0.082 -0.012133
a 0.075 6.958
0.00045 0.00045

International Scholarly and Scientific Research & Innovation 6(1) 2012

modeling of PHB production was modeled by Leudekpgpt
model and obtained results compared with artificiaural
network, as well. Observed that the neural netwbds
provided appropriate approach for prediction of PHB
concentration, so that the prediction accuracy «ifical
neural network is higher than Leudeking-Piret model

TABLE V
LIST OFSYMBOLSAND UNITS

Symbol Quantity Unit
DCW Dry Cell Weight (g
P Product (g
PHA Polyhydroxyalkanoate (g
PHB Poly-B-hydroxybutyrate g
t Time (h)
X Cell Concentration g
Xo Initial Cell Concentration g
X Maximum Cell Concentration (g
a Growth Associated Factor (ggh
yii Non- growth Associated Factor (g g*h™)
7 Specific Growth Rate, (hY
. Maximum Specific Growth Rate (Ge)
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Fig. 3 Experimental data for microbial productidrP#iB by use of fructose carbon source [10]
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Fig. 4 The prediction of PHB concentration by &t neural network and use of fructose carborrsau
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Fig. 5 Experimental data for microbial productidrPéiB by use of whey carbon source [10]
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Fig. 7 The kinetic modeling of cell growth by uddraictose carbon source
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Fig. 8 The kinetic modeling of cell growth by ufentey carbon source
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Fig. 9 The kinetic modeling of PHB production byudeking-Piret model and use of fructose carboncsour
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Fig. 10 The kinetic modeling of PHB production bgudeking-Piret model and use of whey carbon source
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