Search results for: strength characteristics
3364 Characteristics of Corporate Social Responsibility Indicators
Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas
Abstract:
The aim of the study is to investigate a number of characteristics of Corporate Social Responsibility (CSR) indicators that should be adopted by CSR assessment methodologies. For the purpose of this paper, a survey among the Greek companies that belong to FTSE 20 in Athens Exchange (FTSE/Athex-20) has been conducted, as these companies are expected to pioneer in the field of CSR. The results show consensus as regards the characteristics of indicators such as the need for the adoption of general and specific sector indicators, financial and non-financial indicators, the origin and the weight rate. However, the results are contradictory concerning the appropriate number of indicators for the assessment of CSR and the unit of measurement. Finally, the company-s sector is a more important dimension of CSR than the size and the country where the company operates. The purpose of this paper is to standardize the main characteristics of CSR indicators.
Keywords: Corporate social responsibility, Greece, Indicators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79623363 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics
Authors: Qiuhua Miao, Peng Huang, Yifei Ding
Abstract:
Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.
Keywords: Relative regional total energy, crushing energy, axial segregation characteristics, rotary drum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833362 Fabrication Characteristics and Mechanical Behavior of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique
Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya
Abstract:
This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (solid waste bye product of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4 and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement, estimated percentage porosity, tensile testing, micro hardness measurement and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was however superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.Keywords: Fly ash, hybrid composite, mechanical behaviour, stir-cast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22693361 Characterization of Metallurgical and Mechanical Properties of the Welded AISI 304L Using Pulsed and Non-Pulsed Current TIG Welding
Authors: A. A. Ugla
Abstract:
The present paper aims to investigate the effects of the welding process parameters and cooling state on the weld bead geometry, mechanical properties and microstructure characteristics for weldments of AISI 304L stainless steel. The welding process was carried out using TIG welding with pulsed/non-pulsed current techniques. The cooling state was introduced as an input parameter to investigate the main effects on the structure morphology and thereby the mechanical property. This paper clarifies microstructure- mechanical property relationship of the welded specimens. In this work, the selected pulse frequency levels were 5-500 Hz in order to study the effect of low and high frequencies on the weldment characteristics using filler metal of ER 308LSi. The key findings of this work clarified that the pulse frequency has a significant effect on the breaking of the dendrite arms during the welding process and so strongly influences on the tensile strength and microhardness. The cooling state also significantly affects on the microstructure texture and thereby, the mechanical properties. The most important factor affects the bead geometry and aspect ratio is the travel speed and pulse frequency.
Keywords: Microstructure, mechanical properties, pulse frequency, high pulse frequency, austenitic stainless steel, TIG welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15783360 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks
Authors: V. Revathi, J. Thaarrini, M. Venkob Rao
Abstract:
This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.
Keywords: Bottom ash, GGBS, alkali activation, paver block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40413359 Internal Structure Formation in High Strength Fiber Concrete during Casting
Authors: Olga Kononova, Andrejs Krasnikovs , Videvuds Lapsa, Jurijs Kalinka, Angelina Galushchak
Abstract:
Post cracking behavior and load –bearing capacity of the steel fiber reinforced high-strength concrete (SFRHSC) are dependent on the number of fibers are crossing the weakest crack (bridged the crack) and their orientation to the crack surface. Filling the mould by SFRHSC, fibers are moving and rotating with the concrete matrix flow till the motion stops in each internal point of the concrete body. Filling the same mould from the different ends SFRHSC samples with the different internal structures (and different strength) can be obtained. Numerical flow simulations (using Newton and Bingham flow models) were realized, as well as single fiber planar motion and rotation numerical and experimental investigation (in viscous flow) was performed. X-ray pictures for prismatic samples were obtained and internal fiber positions and orientations were analyzed. Similarly fiber positions and orientations in cracked cross-section were recognized and were compared with numerically simulated. Structural SFRHSC fracture model was created based on single fiber pull-out laws, which were determined experimentally. Model predictions were validated by 15x15x60cm prisms 4 point bending tests.Keywords: fibers, orientation, high strength concrete, flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14473358 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions
Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann
Abstract:
Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.
Keywords: Composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18333357 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft
Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee
Abstract:
Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30083356 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams
Authors: Fares Jnaid, Riyad Aboutaha
Abstract:
In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.
Keywords: FEA, ANSYS, Unbond, Strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32453355 Comparing Interval Estimators for Reliability in a Dependent Set-up
Authors: Alessandro Barbiero
Abstract:
In this paper some procedures for building confidence intervals for the reliability in stress-strength models are discussed and empirically compared. The particular case of a bivariate normal setup is considered. The confidence intervals suggested are obtained employing approximations or asymptotic properties of maximum likelihood estimators. The coverage and the precision of these intervals are empirically checked through a simulation study. An application to real paired data is also provided.
Keywords: Approximate estimators, asymptotic theory, confidence interval, Monte Carlo simulations, stress-strength, variance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14803354 e-Commerce versus m-Commerce: Where is the Dividing Line?
Authors: Priscilla Omonedo, Paul Bocij
Abstract:
Since the emergence of e-Commerce, the world of business has witnessed a radical shift in the way business activities are conducted. However, the emergence of m-Commerce has further pushed the boundaries of virtual commerce revolution. As a result, there seems to be a growing blur in the distinction between e- Commerce and m-Commerce. In addition, existing definitions for both forms of commerce highlight characteristics (e.g. type of device and activity conducted) that may be applicable to both concepts. The aim of this paper is to identify the characteristics that help define and delineate between e- and m- Commerce. The paper concludes that characteristics of mobility, ubiquity and immediacy provide a clearer and simpler template to distinguish between e-Commerce and m- Commerce.
Keywords: e-Commerce, m-Commerce, mobility, ubiquity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53653353 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.
Keywords: Learning activity, mathematics, motivation, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19573352 Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair
Authors: S. N. A. Azraai, K. S. Lim, N. Yahaya, N. M. Noor
Abstract:
This experimental study consists of a characterization of epoxy grout where an amount of 2% of graphene nanoplatelets particles were added to commercial epoxy resin to evaluate their behavior regarding neat epoxy resin. Compressive tests, tensile tests and flexural tests were conducted to study the effect of graphene nanoplatelets on neat epoxy resin. By comparing graphene-based and neat epoxy grout, there is no significant increase of strength due to weak interface in the graphene nanoplatelets/epoxy composites. From this experiment, the tension and flexural strength of graphenebased epoxy grouts is slightly lower than ones of neat epoxy grout. Nevertheless, the addition of graphene has produced more consistent results according to a smaller standard deviation of strength. Furthermore, the graphene has also improved the ductility of the grout, hence reducing its brittle behaviour. This shows that the performance of graphene-based grout is reliably predictable and able to minimise sudden rupture. This is important since repair design of damaged pipeline is of deterministic nature.Keywords: Composite, epoxy resin, graphene nanoplatelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24783351 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method
Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak
Abstract:
This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic nonlinearity parameter was obtained by amplitudedependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic nonlinearity parameter and residual strength was proposed from each test result.
Keywords: Fire damaged concrete, nonlinear resonance vibration method, nonlinearity parameter, post-fire-curing, splitting tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21233350 Frequency-Energy Characteristics of Local Earthquakes using Discrete Wavelet Transform(DWT)
Authors: O. H. Colak, T. C. Destici, S. Ozen, H. Arman, O. Cerezci
Abstract:
The wavelet transform is one of the most important method used in signal processing. In this study, we have introduced frequency-energy characteristics of local earthquakes using discrete wavelet transform. Frequency-energy characteristic was analyzed depend on difference between P and S wave arrival time and noise within records. We have found that local earthquakes have similar characteristics. If frequency-energy characteristics can be found accurately, this gives us a hint to calculate P and S wave arrival time. It can be seen that wavelet transform provides successful approximation for this. In this study, 100 earthquakes with 500 records were analyzed approximately.Keywords: Discrete Wavelet Transform, Frequency-EnergyCharacteristics, P and S waves arrival time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22733349 An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate
Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, Md. Salamah Meherier
Abstract:
This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.
Keywords: Polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32823348 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber
Authors: Mohamed H. Gabr, Kiyoshi Uzawa
Abstract:
The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.
Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763347 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design
Authors: Elvan Ender, Murat Zencirkıran
Abstract:
One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.
Keywords: Bursa, flower characteristics, natural plants, planting design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10583346 Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars
Authors: Khaled S. Ragab, Ahmed S. Eisa
Abstract:
This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3
Keywords: Self compacting concrete, torsion behavior, steel fiber, steel fiber reinforced high strength self compacting concrete (SFRHSCC), GFRP bars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33643345 Variation of Quality of Roller-Compacted Concrete Based on Consistency
Authors: C. Chhorn, S. H. Han, S. W. Lee
Abstract:
Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.
Keywords: Compacted depth, consistency, international roughness index, pavement, roller-compacted concrete, skid resistance, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11263344 A Study on the Characteristics of the Korean Color Based On the Comparative Analysis of the Korea, China and Japan-s Porcelains
Authors: Sungwon Jo
Abstract:
Ceramics comprise the largest proportion of Korea-s cultural heritage currently preserved (Cited from “The Beauty of Old Ceramics of Korea" written by Yoon Yong-iee). Thus, this researcher conducted this investigation in an attempt to gain insight into Korea-s past culture and the lost period of the colonial period and the Korean War by looking into the ceramics. Korea, China and Japan are part of the similar cultural bloc within the East Asian region. Their porcelains manifest distinctive characteristics by each nation along with similarities. Thus, this research seeks to find the distinctive characteristics of the Korean porcelain by conducting comparative analysis of the similarities and distinctive characteristics. These distinctive characteristics are manifested effectively in the colors of the porcelains following the materials that can be obtained in Korea, China and Japan and production method. Likewise, this research seeks to identify the characteristics of the Korean porcelains- colors based on the comparative analysis of the porcelain colors. The reasons that porcelains were selected were because they are the most well preserved cultural remains in Korea and since they have both similarities and distinctive characteristics due to the cultural interchanges among Korea, China and Japan, which facilitates comparative study. The research targets include Korea, China and Japan-s porcelains. By comparing the colors of the porcelains from Korea, China and Japan that have their distinctive characteristics, this research seeks to identify Korea-specific porcelain colors. These colors derive from the materials that can be obtained only in Korea, and they are affected by the ideologies that governed at the time. This research is meaningful in the sense that this identifies the colors that embraces the Korean culture and provides important data by leveraging the study of the characteristics of the Korea-specific porcelains.
Keywords: The colors of Korean pottery, The colors of China pottery, The colors of Japan pottery, The unique identity of Korea, Pottery History.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18973343 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints
Authors: Ferhat Kadioglu, Hasan Puskul
Abstract:
A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24553342 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties
Authors: Chee-Ming Chan
Abstract:
In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.Keywords: natural fibres, clay bricks, strength, water absorption, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46653341 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.
Keywords: Stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10033340 An Additive Watermarking Technique in Gray Scale Images Using Discrete Wavelet Transformation and Its Analysis on Watermark Strength
Authors: Kamaldeep Joshi, Rajkumar Yadav, Ashok Kumar Yadav
Abstract:
Digital Watermarking is a procedure to prevent the unauthorized access and modification of personal data. It assures that the communication between two parties remains secure and their communication should be undetected. This paper investigates the consequence of the watermark strength of the grayscale image using a Discrete Wavelet Transformation (DWT) additive technique. In this method, the gray scale host image is divided into four sub bands: LL (Low-Low), HL (High-Low), LH (Low-High), HH (High-High) and the watermark is inserted in an LL sub band using DWT technique. As the image is divided into four sub bands, a watermark of equal size of the LL sub band has been inserted and the results are discussed. LL represents the average component of the host image which contains the maximum information of the image. Two kinds of experiments are performed. In the first, the same watermark is embedded in different images and in the later on the strength of the watermark varies by a factor of s i.e. (s=10, 20, 30, 40, 50) and it is inserted in the same image.
Keywords: Watermarking, discrete wavelet transform, scaling factor, steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14443339 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles
Authors: Mirigul Altan, Huseyin Yildirim
Abstract:
Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38993338 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC
Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan
Abstract:
Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59643337 Talent in Autism: Cognitive Style based on Weak Central Coherence and Special Sensory Characteristics in State of Kuwait: Case Study
Authors: Mariam Abdulaziz Y.Esmaeel
Abstract:
The study aimed to identify the nature of autistic talent, the manifestations of their weak central coherence, and their sensory characteristics. The case study consisted of four talented autistic males. Two of them in drawing, one in clay formation and one in jigsaw puzzle. Tools of data collection were Group Embedded Figures Test, Block Design Test, Sensory Profile Checklist Revised, Interview forms and direct observation. Results indicated that talent among autistics emerges in limited domain and being extraordinary for each case. Also overlapping construction properties. Indeed, they show three perceptual aspects of weak central coherence: The weak in visual spatial-constructional coherence, the weak in perceptual coherence and the weak in verbal – semantic coherence. Moreover, the majority of the study cases used the three strategies of weak central coherence (segmentation, obliqueness and rotation). As for the sensory characteristics, all study cases have numbers of that characteristics that especially emerges in the visual system.Keywords: Autism, Central Coherence, Savant, Sensory characteristics, Talent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26973336 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete
Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain
Abstract:
The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.
Keywords: Cathode ray tube, glass, coarse aggregate, compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763335 Strengthen of Cold-Formed Steel Column with Ferrocement Jacket: Push out Tests
Authors: Khaled Alenezi, Talal Alhajri, M. M. Tahir, Mohamed Ragaee K. Badr, S. O. Bamaga
Abstract:
The population growth in the world requires an increase in demand of residential and housing construction. Using lightweight construction materials such as cold formed steel sections and ferrocement could be an alternate solution to foster the construction industry. In this study, a new composite column is introduced. It consists of cold formed steel section and ferrocement jacket. The ferrocement jacket was constructed using self-compacting mortar with two wire steel mesh of 550 MPa yield strength. Experimental push out tests was conducted to investigate the strength capacities and behavior of proposed shear connectors namely, bolt, bar-angle and self-drilling screw shear connectors. It was found that bolt connector showed the best behavior followed by bar-angle. Also, it was concluded that the ferrocement could be used to strength and improve the behavior of cold formed steel column.
Keywords: Cold formed steel, composite column, push out test, shear connector, ferrocement, strengthen method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296