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Abstract—In this paper some procedures for building confidence
intervals for the reliability in stress-strength models are discussed and
empirically compared. The particular case of a bivariate normal set-
up is considered. The confidence intervals suggested are obtained
employing approximations or asymptotic properties of maximum
likelihood estimators. The coverage and the precision of these
intervals are empirically checked through a simulation study. An
application to real paired data is also provided.
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I. INTRODUCTION

THE aim of this paper is to propose confidence intervals
for the probability P (X > Y ), where X and Y are two

normal random variables with joint distribution φ(x, y) and
when sample values x and y are jointly observed.

The recent years has seen a lot of publications on this sub-
ject, perhaps because of its practical applications encapsulated
by the term “stress-strength”. When speaking of stress-strength
models, we usually mean the assessment of “reliability” of
a “component” in terms of random variables Y representing
“stress” experienced by the component and X representing
the “strength” of the component available to overcome the
stress. According to this simplified scenario, if the stress
exceeds the strength (Y > X) the component fails; and vice
versa. Reliability is defined as the probability of not failing:
R = P (X > Y ). The reliability problem arises in the fields
of aeronautical, civil, mechanical and electronic engineering;
but it can be also applied to other contexts.

The germ of this idea was introduced by Birnbaum [1] and
developed by Birnbaum and McCarty [2]. From then onwards
a lot of research has been done, devoted to probabilistic
problems associated with evaluation of R and construction
of efficient estimators of this parameter, based on sample
values with various assumptions on the distributions of X
and Y . Most of it presuppose that both random variables
have distribution belonging to the same family, and more
significantly assume independence between them. There have,
however, been studies in which X and Y admit certain
specified form of dependence: see for example [5], [10], [16]
for the bivariate normal case, and [7], [11]–[13] for other
parametric families; see [8] for a more complete review.

In this paper the estimation of reliability when X and Y are
two non-independent normal variables, with unknown means
and variances and unknown correlation coefficient, will be
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considered. Based upon maximum likelihood (ML) estimators,
approximate interval estimators appeared in literature will be
considered and refined and their performance in terms of
coverage and precision will be empirically investigated and
compared through an extensive simulation study.

The paper is structured as follows: in Section II some
methods for interval estimation of reliability for the normal
dependent setup are presented; in Section III the simulation
design is described, the results are shown and discussed; in
Section IV the interval estimators are applied to a real dataset.

II. AVAILABLE METHODS

As said in the introduction, parametric estimation of relia-
bility under the assumption of independence between X and Y
has been studied by many authors. Yet, the case of a dependent
set-up for the two variables is also interesting, since in many
real situations stress and strength are someway correlated; as
pointed out in [10], the use of a joint distribution for stress
and strength is justified by the practice of using stronger com-
ponents in worse environments which cause greater stresses
(which statistically means positive correlation between stress
and strength).

In the general case, if we denote with fxy(x, y;ηηη) the joint
probability density function of (X, Y ), where ηηη is a vector of
parameters, the reliability is given by

R =
∫ ∞

−∞

∫ x

−∞
fxy(x, y;ηηη)dydx. (1)

The assumption of a bivariate normal distribution for the
couple (X, Y ) has been more widely considered in literature.
Let (X, Y ) ∼ N(μμμ,Σ), where μμμ = (μx, μy) is the vector of
means and

Σ =

(
σ2

x ρσxσy

ρσxσy σ2
y

)
,

the covariance matrix. The expression of R for this set-up is
easily derived (see Owen et al. [15] or Church and Harris [3]):

R = Φ

⎡
⎣ μx − μy√

σ2
x + σ2

y − 2ρσxσy

⎤
⎦ = Φ

[
μx − μy

σd

]
, (2)

with σ2
d = σ2

x + σ2
y − 2ρσxσy . When n random sample

paired observations (xi, yi), i = 1, 2, . . . , n, are available from
(X, Y ) and all the parameters are unknown, Mukherjee and
Sharan [10] propose the ML estimator for R given by:

R̂ = Φ
(

ȳ − x̄

σ̂2
x + σ̂2

y − 2ρ̂σ̂xσ̂y

)
, (3)
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where ρ̂ is the sample correlation coefficient. They calculate
its asymptotic variance as well:

V (R̂) =
1

2πn
e−(μx−μy)2/σ2

d

[
1 +

(μx − μy)2

2σ2
d

]
. (4)

With regard to interval estimation of R, Nandi and Aich [14]
considered the problem of obtaining confidence bounds for R
when the r.v. X and Y follows a bivariate normal distribution,
and it is assumed their variances are equal but unknown, and
the correlation coefficient between them is known.

Gupta and Subramanian [9] overcome the problem of ρ
estimation by supposing for the marginals of the bivariate
normal an equal coefficient of variation ν. Parameters are
estimated using the method of maximum likelihood, and an
asymptotic confidence interval for R, based upon approximate
variance estimators, is derived.

Govindarazulu [5] gives explicit expression for the min-
imum sample size n for specified confidence length and
confidence level when X and Y are bivariate normal with all
the parameters unknown. Implicitly he proposes a confidence
interval (henceforth CI) of R, based on the point estimate
R̂G = Φ [(x̄ − ȳ)/sd]. To get an approximate (1 − α) CI, the
equation to be solved is

P (R1 < R̂ < R2) = P

(
Φ−1(R1) <

X̄ − Ȳ

Sd
< Φ−1(R2)

)
= 1 − α.

(5)

Since
√

n · X̄ − Ȳ

Sd
has a non-central T distribution with f =

n − 1 degrees of freedom and non-centrality parameter λ =
n1/2Φ−1(R), Equation 5 reduces to

P (R1 < R̂ < R2) =

P
(
n1/2Φ−1(R1) < (Z + λ)/W < n1/2Φ−1(R2)

)
= 1 − α, (6)

where Z is the normal standard variable, and W is the square
root of a chi-square random variable divided by its degrees
of freedom. Since E(W ) ≈ 1 and V (W ) = 1/(2f), we can
write λ/W ≈ λ, and then

P (R1 < R̂ < R2)

= P
(
n1/2Φ−1(R1) < T + λ < n1/2Φ−1(R2)

)
= P

(
n1/2(Φ−1(R1) − Φ−1(R)) < T

< n1/2(Φ−1(R2) − Φ−1(R))
)

= 1 − α (7)

where T is a random variable with a central Student’s T
distribution. Substituting R with its estimate R̂, we get the
equation

n1/2Φ−1(R1) − n1/2Φ−1(R̂) = tα/2 (8)

and an analogous one for R2, then the approximate (1 − α)
CI is then given by:(

Φ
[
Φ−1(R̂) +

tα/2,n−1√
n

]
, Φ
[
Φ−1(R̂) +

t1−α/2,n−1√
n

])
.

(9)

Approximate CIs based upon asymptotic properties of the
ML estimator can be easily obtained. The asymptotic variance
of the estimator R̂ by Mukherjee and Sharan (Equation 4) can
be estimated by:

v(R̂) =
1

2πn
e−(x̄−ȳ)2/σ̂2

d

[
1 +

(x̄ − ȳ)2

2σ̂2
d

]
, (10)

with σ̂2
d = s2

d·
n − 1

n
, obtained by substituting in the expression

of V (R̂) all the unknown quantities with their ML estimates.
Then an approximate CI can be computed as(

R̂ + zα/2

√
v(R̂), R̂ + z1−α/2

√
v(R̂)

)
. (11)

Of course, one has to pay attention when the lower bound of
this interval falls below 0, or its upper bound exceeds 1: this
may happen when the sample estimate of R is very low (very
high) and the sample size is small. Then, the previous CI can
be adjusted in the following way:(

max
{

0, R̂ + zα/2

√
v(R̂)

}
,min

{
1, R̂ + z1−α/2

√
v(R̂)

})
.

(12)
Another way to get an approximate CI is to consider the
argument of the Φ function in the expression of R in Equation
2, d = (μx − μy)/σd, and obtain a CI for it, based upon its
ML estimator, d̂; then transform its lower and upper bounds
through the Φ function. This way of proceeding is suggested
by the fact that d̂ is more likely to approximately follow a
normal distribution than R̂: as pointed out in [6], it seems more
reasonable to base inference on a normal approximation to d̂
than on the normal approximation to R̂, since d is unbounded,
whereas R is bounded in (−1; +1). The asymptotic variance
of d̂ can be derived following the same steps in [10], and can
be estimated by:

v(d̂) =
1
n

(
1 + (x̄ − ȳ)2/(2σ̂2

d)
)

(13)

and then an approximate CI for d is given by

(dL, dU ) =
(

d̂ + zα/2

√
v(d̂), d̂ + z1−α/2

√
v(d̂)

)
(14)

and the corresponding CI for R̂ by

(Φ(dL), Φ(dU )) (15)

This way, we also avoid the concern about the feasibility of
lower and upper bounds.

III. SIMULATION STUDY

The simulation study that has been performed aims at
empirically checking the statistical properties of the proposed
estimators, specifically coverage and average length at a nom-
inal level (95%).

The CIs empirically investigated by simulation are:
• Approximate CI based on the asymptotic variance of ML

point estimator variance (ANR, Eq. 12)
• Approximate CI based on asymptotic variance of d̂ in

ML point estimator (AND, Eq. 15)
• Govindarazulu approximate CI (APP , Eq. 9)
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TABLE I
PARAMETERS FOR THE DEPENDENT SET-UP

par. values
μx 0.5 0.5 1 1 0.5 0.5 1 1
μy 0 0 0 0 0 0 0 0
σx 2 1 2 1 2 1 2 1
σy 1 1 1 1 1 1 1 1
ρ 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8
R 0.614 0.692 0.718 0.841 0.646 0.786 0.772 0.943
# 1 2 3 4 5 6 7 8

An array of eight different scenarios has been considered,
each corresponding to a different combination of distribution
parameters (and thus different reliabilities), coded with a
progressive number; they are reported in Table I. Without any
loss in generality, we set μy = 0, σy = 1 and varied the
parameters μx, σx and ρ. ρ here takes two values, 0.5 and
0.8. The five parameters has been jointly set in order to assure
a high value (> 0.5) for the reliability, since in real practice
there is concern for high reliability for the study component.
Nevertheless, the analyzed scenarios cover a large range of
reliability, since R goes from .614 to .943. Different sample
sizes (n = 10, 20, 30, 50) are used in order to test the reliance
of the estimators also for small samples. The number of Monte
Carlo runs has been fixed at 1, 000.

The simulation study for the comparison of interval estima-
tors works as follows:

1) set the parameters ηηη = (μx, μy, σx, σy, ρ) for the bivari-
ate r.v. (X, Y ) (Table I);

2) compute R (Equation 2);
3) draw a sample (x, y) of size n from (X,Y );
4) estimate R and a CI for R, using each of the listed

estimators;
5) check out if this CI contains R; compute its length;
6) repeat 3-5 nSim (10, 000) times and compute the overall

CI coverage (rate of the CI’s containing R) and average
length (computed over the nSim MC runs) for each
interval estimator.

The results of the simulation study are reported in Tables II
and III.

From the results, an empirically best performer does not
stand out; yet, overall, AND gives more stable results (the
coverage is never smaller than 0.918, while for ANR the
minimum coverage rate is 0.766 and for APP 0.820) and
is preferable when expecting high reliability values; under
scenarios 3, 4, 6, 7, 8 it is the best performer for each sample
size. As n increases, the coverage rates of the three estimators
get closer, and approach the nominal level. With regard to
the average length, the three intervals estimators show very
similar values, apart from scenario #8, where AND average
length is sensibly greater than the other two estimators, but is
compensated by a better coverage.

Figure 1 graphically compares the three methods from a
coverage perspective (scenarios 1 ÷ 4 are here examined).

IV. EXAMPLE OF APPLICATION

The example is drawn from [4]. Trace metals in drinking
water affect the flavor, and unusually high concentration can

TABLE II
SIMULATION RESULTS: COVERAGE

n = 10 scenario
method 1 2 3 4 5 6 7 8
ANR 0.891 0.869 0.885 0.834 0.893 0.848 0.876 0.766
AND 0.930 0.918 0.939 0.928 0.932 0.922 0.939 0.932
APP 0.947 0.931 0.933 0.885 0.942 0.908 0.925 0.820

n = 20 scenario
method 1 2 3 4 5 6 7 8
ANR 0.919 0.908 0.903 0.883 0.918 0.906 0.892 0.845
AND 0.935 0.931 0.941 0.937 0.937 0.933 0.945 0.935
APP 0.943 0.920 0.922 0.892 0.939 0.915 0.914 0.820

n = 30 scenario
method 1 2 3 4 5 6 7 8
ANR 0.941 0.936 0.940 0.914 0.944 0.926 0.933 0.874
AND 0.955 0.949 0.958 0.957 0.956 0.961 0.959 0.954
APP 0.960 0.939 0.945 0.906 0.952 0.922 0.931 0.831

n = 50 scenario
method 1 2 3 4 5 6 7 8
ANR 0.939 0.947 0.941 0.942 0.937 0.947 0.933 0.917
AND 0.941 0.953 0.944 0.960 0.945 0.952 0.947 0.952
APP 0.945 0.945 0.933 0.917 0.939 0.927 0.918 0.824

TABLE III
SIMULATION RESULTS: AVERAGE LENGTH

n = 10 scenario
method 1 2 3 4 5 6 7 8
ANR 0.460 0.427 0.414 0.300 0.450 0.357 0.375 0.147
AND 0.439 0.417 0.408 0.334 0.432 0.371 0.383 0.221
APP 0.482 0.445 0.432 0.322 0.470 0.376 0.393 0.176

n = 20 scenario
method 1 2 3 4 5 6 7 8
ANR 0.335 0.317 0.308 0.241 0.329 0.279 0.284 0.125
AND 0.326 0.310 0.302 0.246 0.320 0.277 0.281 0.154
APP 0.336 0.310 0.297 0.217 0.327 0.260 0.266 0.112

n = 30 scenario
method 1 2 3 4 5 6 7 8
ANR 0.276 0.262 0.256 0.203 0.272 0.232 0.238 0.109
AND 0.271 0.258 0.252 0.204 0.267 0.230 0.236 0.123
APP 0.275 0.253 0.244 0.175 0.268 0.210 0.219 0.086

n = 50 scenario
method 1 2 3 4 5 6 7 8
ANR 0.215 0.205 0.200 0.162 0.212 0.183 0.187 0.092
AND 0.213 0.203 0.198 0.162 0.209 0.182 0.186 0.097
APP 0.213 0.197 0.189 0.137 0.207 0.164 0.169 0.067

pose a health hazard. A study selected six river locations and
determined the zinc concentration (mg/L) for both surface
water and bottom water at each location. The six pairs of
observations are displayed in Table IV. The objective is
constructing a confidence interval for the probability that true
average concentration in bottom water exceeds that of the
surface water, i.e. P (X > Y ).

TABLE IV
SAMPLE DATA FOR THE EXAMPLE OF APPLICATION

X Y
0.430 0.415
0.266 0.238
0.567 0.390
0.531 0.410
0.707 0.605
0.716 0.609

For these data, x̄ = 0.5361, ȳ = 0.4445, σ̂2
x = 0.02446,

σ̂2
y = 0.01675, ρ = 0.94216 and then R̂ = 0.951. The

confidence intervals, constructed according to the three meth-
ods described in Section 2 supposing a bivariate normal
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Fig. 1. Monte Carlo coverage for the three methods (first four scenarios).

distribution underlying the data, are reported in Table V, for
different nominal levels (90%, 95%, 99%).

TABLE V
CONFIDENCE INTERVALS FOR THE EXAMPLE

method 90% 95% 99%
ANR 0.846 1.000 0.826 1.000 0.787 1.000
AND 0.733 0.996 0.664 0.998 0.514 0.999
APP 0.754 0.990 0.678 0.995 0.446 0.999

It can be noted that ANR always provides 1 as an upper
bound, and this occurred because of the high value of the
reliability estimate; whereas AND and APP provide similar
results and a larger confidence interval.
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