@article{(Open Science Index):https://publications.waset.org/pdf/10001238,
	  title     = {An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate},
	  author    = {Md. Jahidul Islam and  A. K. M. Rakinul Islam and  Md. Salamah Meherier},
	  country	= {},
	  institution	= {},
	  abstract     = {This study investigates the suitability of using plastic,
such as polyethylene terephthalate (PET), as a partial replacement of
natural coarse and fine aggregates (for example, brick chips and
natural sand) to produce lightweight concrete for load bearing
structural members. The plastic coarse aggregate (PCA) and plastic
fine aggregate (PFA) were produced from melted polyethylene
terephthalate (PET) bottles. Tests were conducted using three
different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57,
where PCA and PFA were used as 50% replacement of coarse and
fine aggregate respectively. Fresh and hardened properties of
concrete have been compared for natural aggregate concrete (NAC),
PCA concrete (PCC) and PFA concrete (PFC). The compressive
strength of concrete at 28 days varied with the water–cement ratio for
both the PCC and PFC. Between PCC and PFC, PFA concrete
showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio
and also the lowest compressive strength (13.7 MPa) at 0.57 w/c
ratio. Significant reduction in concrete density was mostly observed
for PCC samples, ranging between 1977–1924 kg/m³. With the
increase in water–cement ratio PCC achieved higher workability
compare to both NAC and PFC. It was found that both the PCA and
PFA contained concrete achieved the required compressive strength
to be used for structural purpose as partial replacement of the natural
aggregate; but to obtain the desired lower density as lightweight
concrete the PCA is most suited.
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {9},
	  number    = {5},
	  year      = {2015},
	  pages     = {558 - 561},
	  ee        = {https://publications.waset.org/pdf/10001238},
	  url   	= {https://publications.waset.org/vol/101},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 101, 2015},