Search results for: layer thickness
1150 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels
Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan
Abstract:
The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.
Keywords: Aerogel, aramid fabric, flexibility, thermal resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8041149 Treatment of Inorganic Filler Surface by Silane-Coupling Agent: Investigation of Treatment Condition and Analysis of Bonding State of Reacted Agent
Authors: Hiroshi Hirano, Joji Kadota, Toshiyuki Yamashita, Yasuyuki Agari
Abstract:
It is well known that enhancing interfacial adhesion between inorganic filler and matrix resin in a composite lead to favorable properties such as excellent mechanical properties, high thermal resistance, prominent electric insulation, low expansion coefficient, and so on. But it should be avoided that much excess of coupling agent is reacted due to a negative impact of their final composite-s properties. There is no report to achieve classification of the bonding state excepting investigation of coating layer thickness. Therefore, the analysis of the bonding state of the coupling agent reacted with the filler surface such as BN particles with less functional group and silica particles having much functional group was performed by thermal gravimetric analysis and pyrolysis GC/MS. The reacted number of functional groups on the silane-coupling agent was classified as a result of the analysis. Thus, we succeeded in classifying the reacted number of the functional groups as a result of this study.Keywords: Inorganic filler, boron nitride, surface treatment, coupling agent, analysis of bonding state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50411148 Decomposition Method for Neural Multiclass Classification Problem
Authors: H. El Ayech, A. Trabelsi
Abstract:
In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711147 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.Keywords: Multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8361146 Macular Ganglion Cell Inner Plexiform Layer Thinning in Patients with Visual Field Defect that Respects the Vertical Meridian
Authors: Hye-Young Shin, Chan Kee Park
Abstract:
Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.Keywords: Brain lesion, Macular ganglion cell-Inner plexiform layer, Spectral-domain optical coherence tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721145 Modification of Anodized Mg Alloy Surface By Pulse Condition for Biodegradable Material
Authors: Y.K. Kim, Y.S. Jang, H.H. Park, J.H. Ji, I.S. Park, T.S. Bae, M.H. Lee
Abstract:
Magnesium is used implant material potentially for non-toxicity to the human body. Due to the excellent bio-compatibility, Mg alloys is applied to implants avoiding removal second surgery. However, it is found commercial magnesium alloys including aluminum has low corrosion resistance, resulting subcutaneous gas bubbles and consequently the approach as permanent bio-materials. Generally, Aluminum is known to pollution substance, and it raises toxicity to nervous system. Therefore especially Mg-35Zn-3Ca alloy is prepared for new biodegradable materials in this study. And the pulsed power is used in constant-current mode of DC power kinds of anodization. Based on the aforementioned study, it examines corrosion resistance and biocompatibility by effect of current and frequency variation. The surface properties and thickness were compared using scanning electronic microscopy. Corrosion resistance was assessed via potentiodynamic polarization and the effect of oxide layer on the body was assessed cell viability. Anodized Mg-35Zn-3Ca alloy has good biocompatibility in vitro by current and frequency variation.Keywords: Biodegradable material, Mg, anodization, osteoblast cell, pulse power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651144 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method
Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal
Abstract:
In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.
Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32711143 Free Vibration Analysis of Functionally Graded Beams
Authors: Gholam Reza Koochaki
Abstract:
This work presents the highly accurate numerical calculation of the natural frequencies for functionally graded beams with simply supported boundary conditions. The Timoshenko first order shear deformation beam theory and the higher order shear deformation beam theory of Reddy have been applied to the functionally graded beams analysis. The material property gradient is assumed to be in the thickness direction. The Hamilton-s principle is utilized to obtain the dynamic equations of functionally graded beams. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. Comparison of the numerical results for the homogeneous beam with Euler-Bernoulli beam theory results show that the derived model is satisfactory.Keywords: Functionally graded beam, Free vibration, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21301142 Some Physical and Mechanical Properties of Jujube Fruit
Authors: D. Zare, H. Safiyari, F. Salmanizade
Abstract:
In this study, some physical and mechanical properties of jujube fruits, were measured and compared at constant moisture content of 15.5% w.b. The results showed that the mean length, width and thickness of jujube fruits were 18.88, 16.79 and 15.9 mm, respectively. The mean projected areas of jujube perpendicular to length, width, and thickness were 147.01, 224.08 and 274.60 mm2, respectively. The mean mass and volume were 1.51 g and 2672.80 mm3, respectively. The arithmetic mean diameter, geometric mean diameter and equivalent diameter varied from 14.53 to 20 mm, 14.5 to 19.94 mm, and 14.52 to 19.97 mm, respectively. The sphericity, aspect ratio and surface area of jujube fruits were 0.91, 0.89 and 926.28 mm2, respectively. Whole fruit density, bulk density and porosity of jujube fruits were measured and found to be 1.52 g/cm3, 0.3 g/cm3 and 79.3%, respectively. The angle of repose of jujube fruit was 14.66° (±0.58°). The static coefficient of friction on galvanized iron steel was higher than that on plywood and lower than that on glass surface. The values of rupture force, deformation, hardness and energy absorbed were found to be between 11.13-19.91N, 2.53- 4.82mm, 3.06-5.81N mm and 20.13-39.08 N/mm, respectively.Keywords: Mechanical and Physical properties, Jujube fruits, friction coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021141 On the Operation Mechanism and Device Modeling of AlGaN/GaN High Electron Mobility Transistors (HEMTs)
Authors: Li Yuan, Weizhu Wang, Kean Boon Lee, Haifeng Sun, Susai Lawrence Selvaraj, Shane Todd, Guo-Qiang Lo
Abstract:
In this work, the physical based device model of AlGaN/GaN high electron mobility transistors (HEMTs) has been established and the corresponding device operation behavior has been investigated also by using Sentaurus TCAD from Synopsys. Advanced AlGaN/GaN hetero-structures with GaN cap layer and AlN spacer have been considered and the GaN cap layer and AlN spacer are found taking important roles on the gate leakage blocking and off-state breakdown voltage enhancement.Keywords: AlGaN/GaN, HEMT, Physical mechanism, TCAD simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38051140 Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice
Authors: Murugan, K. N. Sharma, S. D.
Abstract:
The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.Keywords: Convergent orifice jet, Divergent orifice jet, Mass entrainment, mixing layer, near field noise, frequency spectrum, SPL, Strouhal number, wave number, reactive pressure field, propagating pressure field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581139 Heat Transfer Modeling in Multi-Layer Cookware using Finite Element Method
Authors: Mohammad Reza Sedighi, Behnam Nilforooshan Dardashti
Abstract:
The high temperature degree and uniform Temperature Distribution (TD) on surface of cookware which contact with food are effective factors for improving cookware application. Additionally, the ability of pan material in retaining the heat and nonreactivity with foods are other significant properties. It is difficult for single material to meet a wide variety of demands such as superior thermal and chemical properties. Multi-Layer Plate (MLP) makes more regular TD. In this study the main objectives are to find the best structure (single or multi-layer) and materials to provide maximum temperature degree and uniform TD up side surface of pan. And also heat retaining of used metals with goal of improving the thermal quality of pan to economize the energy. To achieve this aim were employed Finite Element Method (FEM) for analyzing transient thermal behavior of applied materials. The analysis has been extended for different metals, we achieved the best temperature profile and heat retaining in Copper/ Stainless Steel MLP.Keywords: Cookware, Energy optimization, Heat retaining, Laminated plate, Temperature distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23821138 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers
Authors: Irina Eglite, Andrei A. Kolyshkin
Abstract:
Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181137 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8911136 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints
Authors: Bintao Wu, Xiangfang Xu, Yugang Miao, Duanfeng Han
Abstract:
Joining of 1mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti, TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.
Keywords: Bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22991135 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.
Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9001134 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic
Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei
Abstract:
An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.
Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131133 Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis
Authors: Diego Garijo
Abstract:
A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.
Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411132 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon
Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov
Abstract:
A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.
Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10821131 Nice Stadium: Design of a Flat Single Layer ETFE Roof
Authors: A. Escoffier, A. Albrecht, F. Consigny
Abstract:
In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats.Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels.
This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.
Keywords: Biaxial test, creep, ETFE, single layer, stadium roof.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33301130 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating
Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo
Abstract:
In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.
Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061129 Analysis of a Novel Strained Silicon RF LDMOS
Authors: V.Fathipour, M. A. Malakootian, S. Fathipour, M. Fathipour
Abstract:
In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.
Keywords: High Frequency MOSFET, Design of RF LDMOS, Strained-Silicon, LDMOS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17941128 Application of Artificial Neural Networks for Temperature Forecasting
Authors: Mohsen Hayati, Zahra Mohebi
Abstract:
In this paper, the application of neural networks to study the design of short-term temperature forecasting (STTF) Systems for Kermanshah city, west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STTF systems is used. Our study based on MLP was trained and tested using ten years (1996-2006) meteorological data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STTF systems.Keywords: Artificial neural networks, Forecasting, Weather, Multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43541127 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831126 Investigation of Droplet Size Produced in Two-Phase Gravity Separators
Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell
Abstract:
Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.
Keywords: Two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211125 Mineral and Some Physico-Chemical Composition of 'Karayemis' (Prunus laurocerasus L.) Fruits Grown in Northeast Turkey
Authors: İsmail Hakkı Kalyoncu, Nilda Ersoy, Ayşe Yalcın Elidemir, Cansu Dolek
Abstract:
Some physico-chemical characteristics and mineral composition of 'Karayemis' (Prunus laurocerasus L.) fruits which grown naturally in Norteast Turkey was studied. 28 minerals ( Al, Mg, B, Mn, Co, Na, Ca, Ni, Cd, P, Cr, Pb, Cu, S, Fe, Zn, K, Sr, Li, As, V, Ag, Ba, Br, Ga, In, Se, Ti) were analyzed and 19 minerals were present at ascertainable levels. Karayemis fruit was richest in potassium (7938.711 ppm), magnesium (1242.186 ppm) and calcium (1158.853 ppm). And some physico-chemical characteristics of Karayemis fruit was investigated. Fruit length, fruit width, fruit thickness, fruit weight, total soluble solids, colour, protein, crude ash, crude fiber, crude oil values were determined as 2.334 cm, 1.884 cm, 2.112 cm, 5.35 g, 20.1 %, S99M99Y99, 0.29 %, 0.22 %, 6.63 % and 0.001 %, respectively. The seed of fruit mean weight, length, width and thickness were found to be 0.41 g, 1.303 cm, 0.921 cm and 0.803, respectively.Keywords: Prunus laurocerasus L., physico-chemical properties, nutritional properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25181124 Defect Modes in Multilayered Piezoelectric Structures
Authors: D. G. Piliposyan
Abstract:
Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.Keywords: Defect mode, Bloch waves, periodic phononic crystal, piezoelectric composite waveguide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11031123 Per Flow Packet Scheduling Scheme to Improve the End-to-End Fairness in Mobile Ad Hoc Wireless Network
Authors: K. Sasikala, R. S. D Wahidabanu
Abstract:
Various fairness models and criteria proposed by academia and industries for wired networks can be applied for ad hoc wireless network. The end-to-end fairness in an ad hoc wireless network is a challenging task compared to wired networks, which has not been addressed effectively. Most of the traffic in an ad hoc network are transport layer flows and thus the fairness of transport layer flows has attracted the interest of the researchers. The factors such as MAC protocol, routing protocol, the length of a route, buffer size, active queue management algorithm and the congestion control algorithms affects the fairness of transport layer flows. In this paper, we have considered the rate of data transmission, the queue management and packet scheduling technique. The ad hoc network is dynamic in nature due to various parameters such as transmission of control packets, multihop nature of forwarding packets, changes in source and destination nodes, changes in the routing path influences determining throughput and fairness among the concurrent flows. In addition, the effect of interaction between the protocol in the data link and transport layers has also plays a role in determining the rate of the data transmission. We maintain queue for each flow and the delay information of each flow is maintained accordingly. The pre-processing of flow is done up to the network layer only. The source and destination address information is used for separating the flow and the transport layer information is not used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and the transport layer information is used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on not mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and MC-MLAS and the performance of the proposed approach is encouraging.
Keywords: ATP, End-to-End fairness, FSM, MAC, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851122 Marangoni Instability in a Fluid Layer with Insoluble Surfactant
Authors: Ainon Syazana Ab. Hamid, Seripah Awang Kechil, Ahmad Sukri Abd. Aziz
Abstract:
The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.Keywords: Analytical solutions, Marangoni Instability, Nondeformable free surface, Surfactant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311121 Water Boundary Layer Flow Over Rotating Sphere with Mass Transfer
Authors: G. Revathi, P. Saikrishnan
Abstract:
An analysis is performed to study the influence of nonuniform double slot suction on a steady laminar boundary layer flow over a rotating sphere when fluid properties such as viscosity and Prandtl number are inverse linear functions of temperature. Nonsimilar solutions have been obtained from the starting point of the streamwise co-ordinate to the exact point of separation. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation have been overcome by applying an implicit finite difference scheme in combination with the quasi-linearization technique and an appropriate selection of the finer step sizes along the stream-wise direction. The present investigation shows that the point of ordinary separation can be delayed by nonuniform double slot suction if the mass transfer rate is increased and also if the slots are positioned further downstream. In addition, the investigation reveals that double slot suction is found to be more effective compared to a single slot suction in delaying ordinary separation. As rotation parameter increase the point of separation moves upstream direction.
Keywords: Boundary layer, suction, mass transfer, rotating sphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6373