%0 Journal Article
	%A Hye-Young Shin and  Chan Kee Park
	%D 2015
	%J International Journal of Medical and Health Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Macular Ganglion Cell Inner Plexiform Layer Thinning in Patients with Visual Field Defect that Respects the Vertical Meridian
	%U https://publications.waset.org/pdf/10002808
	%V 105
	%X Background: To compare the thinning patterns of the
ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal
nerve fiber layer (pRNFL) as measured using Cirrus high-definition
optical coherence tomography (HD-OCT) in patients with visual field
(VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that
respect the vertical meridian were enrolled retrospectively. The
thicknesses of the macular GCIPL and pRNFL were measured using
Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was
calculated as the proportion of abnormally thin sectors at the 5% and
1% probability level within the area corresponding to the affected VF.
The 5% and 1% TAI were compared between the GCIPL and pRNFL
measurements. Results: The color-coded GCIPL deviation map showed a
characteristic vertical thinning pattern of the GCIPL, which is also
seen in the VF of patients with brain lesions. The 5% and 1% TAI
were significantly higher in the GCIPL measurements than in the
pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a
characteristic topographic pattern of retinal ganglion cell (RGC) loss
in patients with VF defects that respect the vertical meridian, unlike
pRNFL measurements. Macular GCIPL measurements provide more
valuable information than pRNFL measurements for detecting the
loss of RGCs in patients with retrograde degeneration of the optic
nerve fibers.
	%P 716 - 721