Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Decomposition Method for Neural Multiclass Classification Problem
Authors: H. El Ayech, A. Trabelsi
Abstract:
In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333570
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571References:
[1] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer- Verlag, London, UK,1995.
[2] U. H.-G. Kreßel. "Pairwise classification and support vector machines". In B. Scholkopf,C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 255-268. The MIT Press, Cambridge, MA, 1999.
[3] J. F. Jodouin, Les réseaux de neurones, principes et définitions. Hermès, 1994.
[4] P.W. Frey and D.J. Slate "Letter Recognition Using Holland-style Adaptive Classifiers". Machine Learning Vol 6 #2, 1991.
[5] H. White, "Connectionist nonparametric regression: Multilayered feedforward networks can learn arbitrary mapping", Neural Networks, 3, pp.535-550, 1990.
[6] Z. Tang, P. Fishwick "Feed-forward Neural Nets as Models for Time Series Forecasting", ORSA Journal of computing 5 (4) pp 374-386, 1993.
[7] W. CHEN, S. CHEN, C. LIN, "A speech recognition method based on the sequential multi-layer perceptrons" Neural Networks, Vol. 9, No. 4, pp. 655-669,1996.
[8] H. Abdi, Les réseaux de neurones. Sciences et technologies de la connaissance. Presse Universitaire de Grenoble, France, 1994.
[9] V. Kecman. Learning and Soft Computing, Support Vector Machines, Neural Networks, and Fuzzy Logic Models. England : The MIT Press, 2001.
[10] A. Cornuéjols, L. Miclet, Y. Kodratoff. Apprentissage artificiel Concepts et algorithmes. France : Editions Eyrolles, 2003.
[11] A. Shigeo "Analysis of Multiclass Support Vector Machines", Graduate School of Science and Technology Kobe University, Kobe, Japan, Available: www2.kobe-u.ac.jp/~abe/pdf/cimca2003.pdf
[12] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. "Large margin DAGs for multiclass classification". In S. A. Solla, T. K. Leen, and K.-R.M¨uller, editors, Advances in Neural InformationProcessing Systems 12, pages 547-553. The MIT Press, 2000.