Defect Modes in Multilayered Piezoelectric Structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Defect Modes in Multilayered Piezoelectric Structures

Authors: D. G. Piliposyan

Abstract:

Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.

Keywords: Defect mode, Bloch waves, periodic phononic crystal, piezoelectric composite waveguide.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339764

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103

References:


[1] A.K. Vashishth, V. Gupta, V., “Wave propagation in transversely isotropic porous piezoelectric materials”, Int. J. Solids Struct. 46, 2009, pp. 3620–3632.
[2] Y.Z. Wang, F.M. Li, K. Kishimoto, Y.S. Wang, and W.H. Huang, “Wave band gaps in three-dimensional periodic piezoelectric structures”, Mech. Research Comm. 36, 2009, pp. 461–468.
[3] M. Wilm, S. Ballandras, V. Laude, and T. Pastureaud, “A full 3D plane-wave expansion model for 1-3 piezoelectric composite structures”, J. Acous. Soc.Amer. 112, 2002, pp. 943–952.
[4] X.Y. Zou, Q. Chen, B. Liang, and J.C. Cheng, “Control of the elastic wave band gaps in two-dimensional piezoelectric periodic structures”, Sm. Mat. Struct. 17, 2008, p. 015008.
[5] Z.Z. Yan, Y.S. Wang, “Calculation of band structures for surface waves in two dimensional phononic crystals with a wavelet-based method”, Phys. Rev. B 78, 2008, p. 094306.
[6] Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarisation state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy”, J. of Phys. D: Appll. Phys. 43, 2010, p. 185401.
[7] G.T. Piliposian, A.S. Avetisyan, and K.B. Ghazaryan, “Shear wave propagation in periodic phononic/photonic piezoelectric medium”, Wave Motion 49(1), 2012, pp. 125-134.
[8] K.B. Ghazaryan, D.G. Piliposyan, “Interfacial effects for shear waves in one dimensional periodic piezoelectric structure”, J. Sound Vib., 330(26), 2012, pp. 6456-6466.
[9] A.N. Darinskii, A.L. Shuvalov, O. Poncelet, A.A. Kutsenko, “Bulk longitudinal wave reflection/transmission in periodic piezoelectric structures with metallized interfaces”, Ultrasonics, Volume 63, 2015, pp. 118-125.
[10] V.I. Alshits, A.L. Shuvalov, “Resonance reflection and transmission of shear elastic waves in multilayered piezoelectric structures”, J. Appl. Phys. 77 (6), 1995, pp. 2659-2665.
[11] V.I. Alshits, A.S. Gorkunova, and A.L. Shuvalov, “Phase resonance in the reflection of acoustic waves by a system of piezocrystalline layers separated by cladding layers with screening properties”, Zh. Eksp. Teor. Fiz. 110, 1996, pp. 924-937.
[12] A.L. Chen, Y.S. Wang, “Study on band gaps of elastic waves propagating in one dimensional disordered phononic crystals”, Physica B 392, 2006, pp. 369–378.
[13] J. Postnova, R.V. Craster, R.V., “Trapped modes in topographically varying elastic waveguides”, Wave Motion 44, 2007, pp. 205–221.
[14] R.V. Craster, S. Guenneau, and S.D.M. Adams, 2009, “Mechanism for slow waves near cut-off frequencies in periodic waveguides”, Phys. Rev. B 79, 2009, p. 045129.
[15] S.D.M. Adams, R.V Craster, and S. Guenneau, “Bloch waves in periodic multi-layered acoustic waveguides”, Proc. R. Soc. A 464, 2008, pp. 2669-2692.
[16] S.D.M.Adams, R.V Craster, and S. Guenneau, “Guided and standing Bloch waves in periodic elastic strips”, Waves Rand. Compl. Media 19(2), 2009, pp. 321–346.
[17] D.G.Piliposyan, K.B. Ghazaryan, and G.T. Piliposian, “Shear Bloch waves and coupled phonon–polariton in periodic piezoelectric waveguides”, Ultrasonics 54(2), 2014, pp. 644–654.
[18] M. Sugimoto, T. Makimoto, “Analysis of mode coupling in piezoelectric waveguides”, Appl. Phys., 45(4), 1973, pp. 1643-1649.
[19] Y. Guo, W. Chen, and Y. Zhang, “Guided wave propagation in multi-layered piezoelectric structures”, Sci. China Ser. G: Phys., Mech. &Astr. 52(7), 2009, pp. 1094-1104.
[20] A.A. Tovar, L.W. Casperson, “Generalized Sylvester theorem for periodic applications in matrix optics”, J. Opt. Soc. Am. A, 12(3), 1995, pp. 578-590.
[21] C. Goffaux, J.P. Vigneron, “Theoretical study of a tunable phononic band gap system”, Phys. Rev. B: Condens. Matter 64, 2011, p. 075118.
[22] K. Bertoldi, M.C. Boyce, “Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures”, Phys. Rev. B: Condens. Matter 77, 2008, p. 052105.