Search results for: Proton Exchange Membrane Fuel Cell.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1959

Search results for: Proton Exchange Membrane Fuel Cell.

1629 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
1628 The Self-Energy of an Ellectron Bound in a Coulomb Field

Authors: J. Zamastil, V. Patkos

Abstract:

Recent progress in calculation of the one-loop selfenergy of the electron bound in the Coulomb field is summarized. The relativistic multipole expansion is introduced. This expansion is based on a single assumption: except for the part of the time component of the electron four-momentum corresponding to the electron rest mass, the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. For non Sstates and normalized difference n3En −E1 of the S-states this itself yields very accurate results after taking the method to the third order. For the ground state the perturbation treatment of the electron virtual states with very high three-momentum is to be avoided. For these states one can always rearrange the pertinent expression in such a way that free-particle approximation is allowed. Combination of the relativistic multipole expansion and free-particle approximation yields very accurate result after taking the method to the ninth order. These results are in very good agreement with the previous results obtained by the partial wave expansion and definitely exclude the possibility that the uncertainity in determination of the proton radius comes from the uncertainity in the calculation of the one-loop selfenergy.

Keywords: Hydrogen-like atoms, self-energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1627 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: Transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
1626 The Effects of Biomass Parameters on the Dissolved Organic Carbon Removal in a Sponge Submerged Membrane Bioreactor

Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, T. T. Nguyen

Abstract:

A novel sponge submerged membrane bioreactor (SSMBR) was developed to effectively remove organics and nutrients from wastewater. Sponge is introduced within the SSMBR as a medium for the attached growth of biomass. This paper evaluates the effects of new and acclimatized sponges for dissolved organic carbon (DOC) removal from wastewater at different mixed liquor suspended solids- (MLSS) concentration of the sludge. It was observed in a series of experimental studies that the acclimatized sponge performed better than the new sponge whilst the optimum DOC removal could be achieved at 10g/L of MLSS with the acclimatized sponge. Moreover, the paper analyses the relationships between the MLSSsponge/MLSSsludge and the DOC removal efficiency of SSMBR. The results showed a non-linear relationship between the biomass parameters of the sponge and the sludge, and the DOC removal efficiency of SSMBR. A second-order polynomial function could reasonably represent these relationships.

Keywords: Acclimatization, Dissolved organic carbon, Mathematical model, Sponge submerged membrane bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1625 Experiments and Modeling of Ion Exchange Resins for Nuclear Power Plants

Authors: Aurélie Mabrouk, Vincent Lagneau, Caroline De Dieuleveult, Martin Bachet, Hélène Schneider, Christophe Coquelet

Abstract:

Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work: column experiments and simulations. A software called OPTIPUR was developed, tested and used. The approach simulates the onedimensional reactive transport in porous medium with convectivedispersive transport between particles and diffusive transport within the boundary layer around the particles. The transfer limitation in the boundary layer is characterized by the mass transfer coefficient (MTC). The influences on MTC were measured experimentally. The variation of the inlet concentration does not influence the MTC; on the contrary of the Darcy velocity which influences. This is consistent with results obtained using the correlation of Dwivedi&Upadhyay. With the MTC, knowing the number of exchange site and the relative affinity, OPTIPUR can simulate the column outlet concentration versus time. Then, the duration of use of resins can be predicted in conditions of a binary exchange.

Keywords: ion exchange resin, mass transfer coefficient, modeling, OPTIPUR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
1624 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey

Abstract:

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH-were prepared by suspension polymerization of vinylbenzyl chloridedivinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen- Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were welldescribed by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Keywords: Anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
1623 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: Exchange rate, quantile regression, combining forecasts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
1622 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková

Abstract:

In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI)  bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.

Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
1621 An Experimental Study on the Effect of EGR and Engine Speed on CO and HC Emissions of Dual Fuel HCCI Engine

Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi

Abstract:

In this study, effects of EGR on CO and HC emissions of a dual fuel HCCI-DI engine are investigated. Tests were conducted on a single-cylinder variable compression ratio (VCR) diesel engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature was 110-115ºC due to better formation of a homogeneous mixture causing HCCI combustion. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge in HCCI combustion. Experiments indicated 35 BTDC as the optimum injection timing. Coolant temperature was maintained 50ºC during the tests. Results show that increasing engine speed at a constant EGR rate leads to increase in CO and UHC emissions due to the incomplete combustion caused by shorter combustion duration and less homogeneous mixture. Results also show that increasing EGR reduces the amount of oxygen and leads to incomplete combustion and therefore increases CO emission due to lower combustion temperature. HC emission also increases as a result of lower combustion temperatures.

Keywords: Dual fuel HCCI engine, EGR, engine speed, CO andUHC emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1620 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1619 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane

Authors: S. Suren, U. Pancharoen

Abstract:

A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.

Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
1618 The Antibacterial and Anticancer Activity of Marine Actinomycete Strain HP411 Isolated in the Northern Coast of Vietnam

Authors: Huyen T. Pham, Nhue P. Nguyen, Tien Q. Phi, Phuong T. Dang, Hy G. Le

Abstract:

Since the marine environmental conditions are extremely different from the other ones, marine actinomycetes might produce novel bioactive compounds. Therefore, actinomycete strains were screened from marine water and sediment samples collected from the coastal areas of Northern Vietnam. Ninety-nine actinomycete strains were obtained on starch-casein agar media by dilution technique, only seven strains, named HP112, HP12, HP411, HPN11, HP 11, HPT13 and HPX12, showed significant antibacterial activity against both gram-positive and gram-negative bacteria (Bacillus subtilis ATCC 6633, Staphylococcus epidemidis ATCC 12228, Escherichia coli ATCC 11105). Further studies were carried out with the most active HP411 strain against Candida albicans ATCC 10231. This strain could grow rapidly on starch casein agar and other media with high salt containing 7-10% NaCl at 28-30oC. Spore-chain of HP411 showed an elongated and circular shape with 10 to 30 spores/chain. Identification of the strain was carried out by employing the taxonomical studies including the 16S rRNA sequence. Based on phylogenetic and phenotypic evidence it is proposed that HP411 to be belongs to species Streptomyces variabilis. The potent of the crude extract of fermentation broth of HP411 that are effective against wide range of pathogens: both grampositive, gram-negative and fungi. Further studies revealed that the crude extract HP411 could obtain the anticancer activity for cancer cell lines: Hep-G2 (liver cancer cell line); RD (cardiac and skeletal muscle letters cell line); FL (membrane of the uterus cancer cell line). However, the actinomycetes from marine ecosystem will be useful for the discovery of new drugs in the future.

Keywords: Marine actinomycetes, antibacterial, anticancer, Streptomyces variabilis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3613
1617 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1616 GRNN Application in Power Systems Simulation for Integrated SOFC Plant Dynamic Model

Authors: N. Nim-on, A. Oonsivilai

Abstract:

In this paper, the application of GRNN in modeling of SOFC fuel cells were studied. The parameters are of interested as voltage and power value and the current changes are investigated. In addition, the comparison between GRNN neural network application and conventional method was made. The error value showed the superlative results.

Keywords: SOFC, GRNN, Fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1615 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: Antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1614 The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

Authors: F. Amin Salehi, L. Sharp, M. A. Abdoli, D.E.Cotton, K.Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1613 Low Power CNFET SRAM Design

Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor

Abstract:

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Keywords: SRAM cell, CNFET, low power, HSPICE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
1612 Kinetics Study of Ammonia Removal from Synthetic Waste Water

Authors: Edison Muzenda, John Kabuba, Freeman Ntuli, Mansoor Mollagee

Abstract:

The aim of this study was to investigate ammonium exchange capacity of natural and activated clinoptilolite from Kwazulu-Natal Province, South Africa. X – ray fluorescence (XRF) analysis showed that the clinoptilolite contained exchangeable ions of sodium, potassium, calcium and magnesium. This analysis also confirmed that the zeolite sample had a high silicon composition compared to aluminium. Batch equilibrium studies were performed in an orbital shaker and the data fitted the Langmuir isotherm very well. The ammonium exchange capacity was found to increase with pH and temperature. Clinoptilolite functionalization with hydrochloric acid increased its ammonia uptake ability.

Keywords: Activated clinoptilolite, Ammonium exchange, Equilibrium, Functionalization, Langmuir isotherm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
1611 The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool

Authors: W. S. Hsu, Y. Chiang, Y. S. Tseng, J. R. Wang, C. Shih, S. W. Chen

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4th day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations.

Keywords: TRACE, MELCOR, SNAP, spent fuel pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
1610 The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment

Authors: W. K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

Abstract:

A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.

Keywords: Alternative fuels, Cement kiln main burner, Oxygen enrichment, Production capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5529
1609 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
1608 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

Authors: M. Mourad, K. Abdelgawwad

Abstract:

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Keywords: Gasoline engine performance, emissions, alcohol blends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1607 The Effects of Perceived Organizational Support, Abusive Supervision, and Exchange Ideology on Employees- Task Performance

Authors: Seung Yeon Son, Heetae Park, Soojin Lee, Seckyoung Loretta Kim, Dongkyu Kim, Seokhwa Yun

Abstract:

Employee-s task performance has been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of task performance is one of the most important research issues. This study tests the influence of perceived organizational support, abusive supervision, and exchange ideology on employee-s task performance. We examined our hypotheses by collecting self-reported data from 413 Korean employees in different organizations. Our all hypotheses gained support from the results. Implications for research and directions for future research are discussed.

Keywords: Abusive supervision, exchange ideology, perceived organizational support, task performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
1606 Short Term Tests on Performance Evaluation of Water-washed and Dry-washed Biodiesel from Used Cooking Oil

Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto

Abstract:

In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.

Keywords: Biodiesel, engine performance, used cooking oil, water wash, dry wash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1605 A Numerical Study of the Effect of Side-Dump Angle on Fuel Droplets Sizing in a Three- Dimensional Side-Dump Combustor

Authors: M. Mojtahedpoor, M. M. Doustdar

Abstract:

A numerical study on the effect of side-dump angle on fuel droplets sizing and effective mass fraction have been investigated in present paper. The mass of fuel vapor inside the flammability limit is named as the effective mass fraction. In the first step we have considered a side-dump combustor with dump angle of 0o (acrossthe cylinder) and by increasing the entrance airflow velocity from 20 to 30, 40 and 50 (m/s) respectively, the mean diameter of fuel droplets sizing and effective mass fraction have been studied. After this step, we have changed the dump angle from 0o to 30o,45o and finally 60o in direction of cylinderand also we have increased the entrance airflow velocity from 20 up to 50 (m/s) with the amount of growth of 10(m/s) in each step, to examine its effects on fuel droplets sizing as well as effective mass fraction. With rise of entrance airflow velocity, these calculations are repeated in each step too. The results show, with growth of dump-angle the effective mass fraction has been decreased and the mean diameter of droplets sizing has been increased. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multicomponent code for the analysis of chemically reacting flows with sprays, is used.

Keywords: Side-Dump combustor, Droplets sizing, Side-Dump angle, KIVA-3V

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1604 Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Authors: Z. Gholamzadeh, A. Zali, S. A. H. Feghhi, C. Tenreiro, Y. Kadi, M. Rezazadeh, M. Aref

Abstract:

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

Keywords: MCNP-4C, Reactor core, Multiplication factor, Reactivity, Peaking factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1603 Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

Authors: Michal M. Koziol

Abstract:

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Keywords: fuel properties, laboratory tests, sewage sludge, storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
1602 Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel

Authors: Tsair-Wang Chung, Kuan-Ting Liu, Mai-Tzu Chen

Abstract:

Under the variation of crude oil price and the impact of greenhouse effect, it is urgent to find a potential alternative fuel. Among these alternative fuels, non edible plant oils are the most potential ones, because they don-t have the problem of food and cropland competitions. Among the non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has good oil quality and low temperature performance. It has potential to become one of the most competitive biomass crude oils. The crude plant oil will be blended with diesel fuel to be tested in a power generator. The international collaboration between Taiwan and Indonesia on the production of Jatropha in Indonesia will also be presented in this study.

Keywords: Jatropha, plant oil, oil blend, diesel, power generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
1601 Capsule-substrate Adhesion in the Presence of Osmosis by the Immersed Interface Method

Authors: P.G. Jayathilake, B.C. Khoo, Zhijun Tan

Abstract:

A two-dimensional thin-walled capsule of a flexible semi-permeable membrane is adhered onto a rigid planar substrate under adhesive forces (derived from a potential function) in the presence of osmosis across the membrane. The capsule is immersed in a hypotonic and diluted binary solution of a non-electrolyte solute. The Stokes flow problem is solved by the immersed interface method (IIM) with equal viscosities for the enclosed and surrounding fluid of the capsule. The numerical results obtained are verified against two simplified theoretical solutions and the agreements are good. The osmotic inflation of the adhered capsule is studied as a function of the solute concentration field, hydraulic conductivity, and the initial capsule shape. Our findings indicate that the contact length shrinks in dimension as capsule inflates in the hypotonic medium, and the equilibrium contact length does not depend on the hydraulic conductivity of the membrane and the initial shape of the capsule.

Keywords: Capsule-substrate adhesion, Fluid mechanics, Immersed interface method, Osmosis, Mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1600 Critical Cylindrical Effect and Space-Time Exchange in Rotational Reference Frames of Special Relativity

Authors: Rui Yin, Ming Yin, Yang Wang

Abstract:

For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal, due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. 36 screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed.

Keywords: Critical radius, critical cylindrical effect, special relativity, space-time exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57