WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10000303,
	  title     = {Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)},
	  author    = {Hafizuddin W. Yussof and  Syamsutajri S. Bahri and  Adam P. Harvey},
	  country	= {},
	  institution	= {},
	  abstract     = {Strong anion exchange resins with QN+OH-, have the
potential to be developed and employed as heterogeneous catalyst for
transesterification, as they are chemically stable to leaching of the
functional group. Nine different SIERs (SIER1-9) with QN+OH-were
prepared by suspension polymerization of vinylbenzyl chloridedivinylbenzene
(VBC-DVB) copolymers in the presence of n-heptane
(pore-forming agent). The amine group was successfully grafted into
the polymeric resin beads through functionalization with
trimethylamine. These SIERs are then used as a catalyst for the
transesterification of triacetin with methanol. A set of differential
equations that represents the Langmuir-Hinshelwood-Hougen-
Watson (LHHW) and Eley-Rideal (ER) models for the
transesterification reaction were developed. These kinetic models of
LHHW and ER were fitted to the experimental data. Overall, the
synthesized ion exchange resin-catalyzed reaction were welldescribed
by the Eley-Rideal model compared to LHHW models,
with sum of square error (SSE) of 0.742 and 0.996, respectively.
},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {9},
	  number    = {1},
	  year      = {2015},
	  pages     = {99 - 103},
	  ee        = {https://publications.waset.org/pdf/10000303},
	  url   	= {https://publications.waset.org/vol/97},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 97, 2015},
	}