Search results for: Electron backscattering diffraction (EBSD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: Electron backscattering diffraction (EBSD)

380 Solving Differential's Equation of Carrier Load on Semiconductor

Authors: Morteza Amirabadi, Vahid Fayaz , Fereshteh Felegary, Hossien Hossienkhani

Abstract:

The most suitable Semiconductor detector, Cadmium Zinc Teloraid , has unique properties because of high Atomic number and wide Brand Gap . It has been tried in this project with different processes such as Lead , Diffusion , Produce and Recombination , effect of Trapping and injection carrier of CdZnTe , to get hole and then present a complete answer of it . Then we should investigate the movement of carrier ( Electron – Hole ) by using above answer.

Keywords: Semiconcuctor detector, Trapping, Recommbination, Diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
379 Clay Mineralogy of Mukdadiya Formation in Shewasoor Area: Northeastern Kirkuk City, Iraq

Authors: Abbas R. Ali, Diana A. Bayiz

Abstract:

14 mudstone samples were collected within the sedimentary succession of Mukdadiya Formation (Late Miocene – Early Pliocene) from Shewasoor area at Northeastern Iraq. The samples were subjected to laboratory studies including mineralogical analysis (using X-ray Diffraction technique) in order to identify the clay mineralogy of Mukdadiya Formation of both clay and non-clay minerals. The results of non-clay minerals are: quartz, feldspar and carbonate (calcite and dolomite) minerals. The clay minerals are: montmorillonite, kaolinite, palygorskite, chlorite, and illite by the major basal reflections of each mineral. The origins of these minerals are deduced also.

Keywords: Clay minerals, formation, Mukdadiya mudstone, Shewasoor, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
378 Light Harvesting Titanium Nanocatalyst for Remediation of Methyl Orange

Authors: Brajesh Kumar, Luis Cumbal

Abstract:

An ecofriendly Citrus paradisipeel extract mediated synthesis of TiO2 nanoparticles is reported under sonication. U.V.-vis, Transmission electron microscopy, Dynamic light scattering, and X-ray analyses are performed to characterize the formation of TiO2 nanoparticles. It is almost spherical in shape, having a size of 60–140 nm and the XRD peaks at 2θ = 25.363° confirm the characteristic facets for anatase form. The synthesized nanocatalyst is highly active in the decomposition of methyl orange (64 mg/L) in sunlight (~73%) for 2.5h.

Keywords: Ecofriendly, TiO2 nanoparticles, Citrusparadisi, TEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
377 Morphology and Magnetic Properties of Fe3O4 and Au@Fe3O4 Nanoparticles Synthesized by Pulsed Plasma in Liquid

Authors: Zhazgul Kelgenbaeva, Emil Omurzak, Saadat Sulaimankulova, Tsutomu Mashimo

Abstract:

Spherical shaped magnetite (Fe3O4) and Au@Fe3O4 nanoparticles were successfully synthesized from Fe electrodes immersed in water with CTAB surfactant and HAuCl4 solution using simple method-pulsed plasma in liquid, without the use of dopants or special conditions for stabilization. Vibrating sample magnetometer indicated ferromagnetic behavior of particles at room temperature with coercivity and saturation magnetization of (Hc=105 Oe, Ms=6.83 emu/g) for Fe3O4 and (Hc=175, Ms=3.56emu/g) for Au@Fe3O4 nanoparticles. Structure and morphology of nanoparticles were characterized by X-ray Diffraction analysis and HR-TEM measurements. The cytotoxicity of nanoparticles was indicated using a XTT assay to be very low (cell viability: 98-89% with Fe3O4 and 99-91% for Au@Fe3O4 NPs).

Keywords: Magnetite, Gold coated magnetite, Nanoparticles, Pulsed Plasma in Liquid, Cytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
376 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
375 Synthesis and Thermoelectric Behavior in Nanoparticles of Doped Co Ferrites

Authors: M. Anis-ur- Rehman, A. Abdullah, Mariam Ansari , Zeb-un-Nisa, M. S. Awan

Abstract:

Samples of CoFe2-xCrxO4 where x varies from 0.0 to 0.5 were prepared by co-precipitation route. These samples were sintered at 750°C for 2 hours. These particles were characterized by X-ray diffraction (XRD) at room temperature. The FCC spinel structure was confirmed by XRD patterns of the samples. The crystallite sizes of these particles were calculated from the most intense peak by Scherrer formula. The crystallite sizes lie in the range of 37-60 nm. The lattice parameter was found decreasing upon substitution of Cr. DC electrical resistivity was measured as a function of temperature. The room temperature thermoelectric power was measured for the prepared samples. The magnitude of Seebeck coefficient depends on the composition and resistivity of the samples.

Keywords: Ferrites, crystallite size, drift mobility, seebeck coefficient, thermopower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
374 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri

Abstract:

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Keywords: Platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
373 X-ray Crystallographic Analysis of MinC N-Terminal Domain from Escherichia coli

Authors: Jun Yop An, Kyoung Ryoung Park, Jung-Gyu Lee, Hyung-Seop Youn, Jung-Yeon Kang, Gil Bu Kang, Soo Hyun Eom

Abstract:

MinC plays an important role in bacterial cell division system by inhibiting FtsZ assembly. However, the molecular mechanism of the action is poorly understood. E. coli MinC Nterminus domain was purified and crystallized using 1.4 M sodium citrate pH 6.5 as a precipitant. X-ray diffraction data was collected and processed to 2.3 Å from a native crystal. The crystal belonged to space group P212121, with the unit cell parameters a = 52.7, b = 54.0, c = 64.7 Å. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient value is 1.94 Å3 Da-1, which corresponds to a solvent content of 36.5%. The overall structure of MinCN is observed as a dimer form through anti-parallel ß-strand interaction.

Keywords: MinC, Cell division, Crystallization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
372 Ni Metallization on SiGe Nanowire

Authors: Y. Li, K. Buddharaju, X. P. Wang

Abstract:

The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.

Keywords: SiGe, nanowires, germanosilicide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
371 The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates

Authors: N. Tugrul, A. S. Kipcak, E. MoroydorDerun, S. Piskin

Abstract:

Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, theraw materials of ZnSO4.7H2O, NaOH and H3BO3werecharacterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates.The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result,Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results.

Keywords: Zinc borate, ZnSO4.7H2O, NaOH, H3BO3, XRD, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790
370 Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α

Authors: A. A. Samat, N. A. Abdullah, M. A. M. Ishak, N. Osman

Abstract:

Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.

Keywords: La0.6Sr0.4CoO3-α, heat treatment, perovskite-type oxide, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4373
369 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City

Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub

Abstract:

The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.

Keywords: Casablanca, guidebook, petrography, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
368 Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal

Authors: M. Javadzadeh, H. Khoshsima

Abstract:

In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm.

Keywords: Liquid crystal, lens, Fresnel zone, diffraction, Fresnel lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
367 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: Graphene, single ion transport, Coulomb blockade, fluidic computer, super capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
366 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Authors: M. Ishak, K. Yamasaki, K. Maekawa

Abstract:

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
365 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts

Authors: Velid Demir, Mesut Akgün

Abstract:

The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al2O3 using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al2O3 was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La2O3/γ-Al2O3 at the same parameters. For this study, ZnO/γ-Al2O3 was the most suitable catalyst due to performance and cost considerations.

Keywords: Biodiesel, heterogeneous catalyst, Jatropha oil, supercritical methanol, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111
364 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios

Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan

Abstract:

Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nanoparticles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000Ao (or 100nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm.

Keywords: Bimetallic Fe/Cu nanoparticles, Loading ratio, Synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5499
363 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
362 The Influence of Substrate Bias on the Mechanical Properties of a W- and S-containing DLC-based Solid-lubricant Film

Authors: Guojia Ma, Guoqiang Lin, Shuili Gong, Gang Sun, Dawang Wang

Abstract:

A diamond-like carbon (DLC) based solid-lubricant film was designed and DLC films were successfully prepared using a microwave plasma enhanced magnetron sputtering deposition technology. Post-test characterizations including Raman spectrometry, X-ray diffraction, nano-indentation test, adhesion test, friction coefficient test were performed to study the influence of substrate bias voltage on the mechanical properties of the W- and S-doped DLC films. The results indicated that the W- and S-doped DLC films also had the typical structure of DLC films and a better mechanical performance achieved by the application of a substrate bias of -200V.

Keywords: Adhesive Strength, Coefficient of Friction, Substrate Bias, W- and S-doped DLC film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
361 The Effect of Carbon on Molybdenum in the Preparation of Microwave Induced Molybdenum Carbide

Authors: Abd. Rahim Yacob, Mohd Khairul Asyraf Amat Mustajab, Nurshaira Haifa Suhaimi

Abstract:

This study shows the effect of carbon towards molybdenum carbide alloy when exposed to Microwave. This technique is also known as Microwave Induced Alloying (MIA) for the preparation of molybdenum carbide. In this study ammonium heptamolybdate solution and carbon black powder were heterogeneously mixed and exposed to microwave irradiation for 2 minutes. The effect on amount of carbon towards the produced alloy on morphological and oxidation states changes during microwave is presented. In this experiment, it is expected carbon act as a reducing agent with the ratio 2:7 molybdenum to carbon as the optimum for the production of molybdenum carbide alloy. All the morphological transformations and changes in this experiment were followed and characterized using X-Ray Diffraction and FESEM.

Keywords: Carbon, molybdenum carbide, microwave induced alloying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
360 Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

Authors: W. Paraguassu, S. Guerini, C. M. R. Remédios, P. T. C. Freire

Abstract:

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

Keywords: Dipotassium molybdate, High pressure, Raman scattering, Phase transition, ab initio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
359 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: β-TCP, bone regeneration, wet chemical processing, polymeric precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
358 Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Authors: A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Keywords: Hydrothermal synthesis, magnesium borates, magnesium wastes, boron oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
357 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
356 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
355 Gasoline and Diesel Production via Fischer- Tropsch Synthesis over Cobalt Based Catalyst

Authors: N. Choosri, N. Swadchaipong, T. Utistham, U. W. Hartley

Abstract:

Performance of a cobalt doped sol-gel derived silica (Co/SiO2) catalyst for Fischer–Tropsch synthesis (FTS) in slurryphase reactor was studied using paraffin wax as initial liquid media. The reactive mixed gas, hydrogen (H2) and carbon monoxide (CO) in a molar ratio of 2:1, was flowed at 50 ml/min. Braunauer-Emmett- Teller (BET) surface area and X-ray diffraction (XRD) techniques were employed to characterize both the specific surface area and crystallinity of the catalyst, respectively. The reduction behavior of Co/SiO2 catalyst was investigated using the Temperature Programmmed Reduction (TPR) method. Operating temperatures were varied from 493 to 533K to find the optimum conditions to maximize liquid fuels production, gasoline and diesel.

Keywords: Fischer Tropsch synthesis, slurry phase, Co/SiO2, operating temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4085
354 Chip Formation during Turning Multiphase Microalloyed Steel

Authors: V.Sivaraman, S. Sankaran, L. Vijayaraghavan

Abstract:

Machining through turning was carried out in a lathe to study the chip formation of Multiphase Ferrite (F-B-M) microalloyed steel. Taguchi orthogonal array was employed to perform the machining. Continuous and discontinuous chips were formed for different cutting parameters like speed, feed and depth of cut. Optical and scanning electron microscope was employed to identify the chip morphology.

Keywords: Multiphase microalloyed steel, chip formation, Taguchi technique, turning, cutting parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
353 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate

Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy

Abstract:

LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.

Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
352 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors

Authors: A. Douara, N. Kermas, B. Djellouli

Abstract:

In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.

Keywords: AlGaN/GaN, centroid capacitance, gate capacitance, HEMT, quantum capacitance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
351 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615