Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
X-ray Crystallographic Analysis of MinC N-Terminal Domain from Escherichia coli

Authors: Jun Yop An, Kyoung Ryoung Park, Jung-Gyu Lee, Hyung-Seop Youn, Jung-Yeon Kang, Gil Bu Kang, Soo Hyun Eom

Abstract:

MinC plays an important role in bacterial cell division system by inhibiting FtsZ assembly. However, the molecular mechanism of the action is poorly understood. E. coli MinC Nterminus domain was purified and crystallized using 1.4 M sodium citrate pH 6.5 as a precipitant. X-ray diffraction data was collected and processed to 2.3 Å from a native crystal. The crystal belonged to space group P212121, with the unit cell parameters a = 52.7, b = 54.0, c = 64.7 Å. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient value is 1.94 Å3 Da-1, which corresponds to a solvent content of 36.5%. The overall structure of MinCN is observed as a dimer form through anti-parallel ß-strand interaction.

Keywords: MinC, Cell division, Crystallization.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061593

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053

References:


[1] Lutkenhaus, J. "Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring", (2007). Annu. Rev. Biochem., 76, 539-562.
[2] Dajkovic, A. and Lutkenhaus, J. "Z ring as executor of bacterial cell division", (2006) J. Mol. Microbiol. Biotechnol., 11, 140-151.
[3] Lutkenhaus, J. "The regulation of bacterial cell division: a time and place for it", (1998) Curr. Opin. Microbiol., 1, 210-215.
[4] Yu, X.-C. and Margolin, W. "FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization", (1999) Mol. Microbiol., 32, 315-326.
[5] de Boer, P. A., Crossley, R. E. and Rothfield, L. I. "A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli", (1989) Cell, 56, 641-649.
[6] Rothfield, L., Justice, S. and Garcia-Lara, J." Bacterial cell division", (1999) Annu. Rev. Genet., 33, 423-448.
[7] Hu, Z. and Lutkenhaus, J. "Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE", (1999) Mol. Microbiol., 34, 82-90.
[8] Raskin, D. M. and de Boer, P. A. "Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli", (1999) Proc. Natl. Acad. Sci USA, 96, 4971-4976.
[9] Hu, Z., Mukherjee, A., Pichoff, S. and Lutkenhaus, J. "The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization", (1999) Proc. Natl. Acad. Sci. USA, 96, 14819-14824.
[10] Raskin, D. M. and de Boer, P. A. "MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli", (1999) J. Bacteriol., 181, 6419-6424.
[11] Huang, J., Cao, C. and Lutkenhaus, J. "Interaction between FtsZ and inhibitors of cell division", (1996) J. Bacteriol., 178, 5080-5085.
[12] King, G. F., Shih, Y. L., Maciejewski, M. W., Bains, N. P., Pan, B., Rowland, S. L., Mullen, G. P. and Rothfield, L. I. "Structural basis for the topological specificity function of MinE", (2000) Nat. Struct. Biol., 7, 1013-1017.
[13] Shen, B. and Lutkenhaus, J. "The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD", (2009) Mol. Microbiol., 72, 410-424.
[14] Dajkovic, A., Lan, G., Sun, S. X., Wirtz, D. and Lutkenhaus, J. "MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ", (2008) Curr. Biol., 18, 235-244.
[15] Hu, Z. and Lutkenhaus, J. "Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ", (2000) J. Bacteriol., 182, 3965-3971.
[16] Otwinowski, Z. and Minor, W. "Processing of X-ray diffraction data collected in the oscillation mode", (1997) Methods Enzymol., 276, 307- 326.
[17] Matthews, B. W. "Solvent content of protein crystals", (1968) J. Mol. Biol., 33, 491-497.
[18] McCoy, A. J., Grosse-Kunstleve R. W., Storoni, L. C. and Read, R. J. "Likelihood-enhanced fast translation functions", (2005) Acta Crystallogr. D. Biol. Crystallogr., 61, 458-464.
[19] Emsley, P. & Cowtan, K. "Coot: model-building tools for molecular graphics", (2004) Acta Crystallogr. D., 60, 2126-2132.
[20] Br├╝nger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W. et al. "Crystallography and NMR systems: a new software suite for macromolecular structure determination", (1998)Acta Crystallogr. D., 54, 905-921.
[21] Murshudov, G. N.,Vagin, A.A. and Dodson,E.J. "Refinement of macromolecular structures by the maximum-likelihood method", (1997) Acta Crystallogr. D., 53, 240-255.