Search results for: gravitational motor.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 480

Search results for: gravitational motor.

180 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
179 Solar Tracking System: More Efficient Use of Solar Panels

Authors: J. Rizk, Y. Chaiko

Abstract:

This paper shows the potential system benefits of simple tracking solar system using a stepper motor and light sensor. This method is increasing power collection efficiency by developing a device that tracks the sun to keep the panel at a right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown.

Keywords: Renewable Energy, Power Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7729
178 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: Bio-heat, Boussinesq, conduction, convection, eye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
177 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
176 Application of Pulse Doubling in Star-Connected Autotransformer Based 12-Pulse AC-DC Converter for Power Quality Improvement

Authors: Rohollah. Abdollahi, Alireza. Jalilian

Abstract:

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

Keywords: AC–DC converter, star-connected autotransformer, power quality, 24 pulse rectifier, Pulse Doubling, direct torquecontrolled induction motor drive (DTCIMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846
175 Neural Network Based Predictive DTC Algorithm for Induction Motors

Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad

Abstract:

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Keywords: Neural Networks, Predictive DTC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
174 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, PVDG, firefly algorithm, voltage fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
173 First Person View Camera Based Quadcopter with Raspberry Pi

Authors: C. R. Balamurugan, P. Vijayakumar, P. Kiruba, S. Arun Kanna, E. R. Hariprasath, C. Anu Priya

Abstract:

This paper studies in details about the need of quadcopter in various fields especially in the place of remote area where the road transportation facility is very less. It is used to monitor and collect data in a specific region. The movement of this quadcopter is controlled by the Raspberry Pi. FPV camera is used for capturing the image and will transmit the image to the receiver which can be monitored using an android smart phone. This is mainly used for surveillance purpose and hidden activities can be captured.

Keywords: FPV camera, A2212 brushless direct current motor, Raspberry Pi, lithium polymer battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
172 Appraisal of Relativistic Effects on GNSS Receiver Positioning

Authors: I. Yakubu, Y. Y. Ziggah, E. A. Gyamera

Abstract:

The Global Navigation Satellite System (GNSS) started with the launch of the United State Department of Defense Global Positioning System (GPS). GNSS systems has grown over the years to include: GLONASS (Russia); Galileo (European Union); BeiDou (China). Any GNSS architecture consists of three major segments: Space, Control and User Segments. Errors such as; multipath, ionospheric and tropospheric effects, satellite clocks, receiver noise and orbit errors (relativity effect) have significant effects on GNSS positioning. To obtain centimeter level accuracy, the impacts of the relative motion of the satellites and earth need to be taken into account. This paper discusses the relevance of the theory of relativity as a source of error for GNSS receivers for position fix based on available relevant literature. Review of relevant literature reveals that due to relativity; Time dilation, Gravitational frequency shift and Sagnac effect cause significant influence on the use of GNSS receivers for positioning by an error range of ± 2.5 m based on pseudo-range computation.

Keywords: GNSS, relativistic effects, pseudo-range, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
171 Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation

Authors: Kuo-Lung Lor, Chi-Hsuan Tsou, Yeun-Chung Chang, Chung-Ming Chen

Abstract:

For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.

Keywords: active contour model, airway wall, COPD, geometric spring structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
170 A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, SIVD, Electromiography , Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
169 Adaptive Nonlinear Backstepping Control

Authors: Sun Lim, Bong-Seok Kim

Abstract:

This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.

Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
168 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
167 Sensorless PM Motor with Multi Degree of Freedom Fuzzy Control

Authors: Faeka M. H. Khater, Farouk I. Ahmed, Mohamed I. Abu El- Sebah

Abstract:

This paper introduces application of multi degree of freedom fuzzy(MDOFF) controller in permanent magnet (PM)drive system. The drive system model is developed for FO control. Simulation of the system is carried out to predict the performance at NL and under load,. The results indicate that application of MDOFF controller is effective for sensorless PM drive system.

Keywords: Sensorless FO controller, PM drives system, MDOFF controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
166 A Fuzzy System to Analyze SIVD Diseases Using the Transcranial Magnetic Stimulation

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia (SIVD) and to measure the effect of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, EMG, fuzzy logic, transcranial magnetic stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
165 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method

Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli

Abstract:

Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.

Keywords: Children with disability, learning abilities, inclusion, neuromotor development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
164 Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, H. B. Mehta

Abstract:

Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10-5 bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP.

Keywords: Closed loop pulsating heat pipe, gravity, heat input, orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
163 Design of High Torque Elbow Joint for Above Elbow Prosthesis

Authors: Irfan Hussain, Adnan Masood, Javaid Iqbal, Umar S. Khan

Abstract:

Above Elbow Prosthesis is one of the most commonly amputated or missing limbs. The research is done for modelling techniques of upper limb prosthesis and design of high torque, light weight and compact in size elbow actuator. The purposed actuator consists of a DC motor, planetary gear set and a harmonic drive. The calculations show that the actuator is good enough to be used in real life powered prosthetic upper limb or rehabilitation exoskeleton.

Keywords: Above Elbow prosthesis, Harmonic drive, Planetarygear set, Sagittal Plane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
162 Modeling and Simulation of a Hybrid Scooter

Authors: W. K. Yap, V. Karri

Abstract:

This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.

Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
161 Design Considerations of PV Water Pumping and Rural Electricity System (2011) in Lower Myanmar

Authors: Nang Saw Yuzana Kya ing, Wunna Swe

Abstract:

Photovoltaic (PV) systems provides a viable means of power generation for applications like powering residential appliances, electrification of villages in rural areas, refrigeration and water pumping. Photovoltaic-power generation is reliable. The operation and maintenance costs are very low. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the solar energy could hopefully become the final solution to its energy supply problem in rural area.

Keywords: Myanmar, Standalone PV Inverter, PV WaterPumping, Design Analysis, Induction Motor Driving System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
160 Stability of Electrical Motor Supplied by a Five Level Inverter

Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia

Abstract:

The development of the power electronics has allowed increasing the precision and reliability of the electrical trainings, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) five level inverters, which is the object of study in this article.The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment).

Keywords: multi level inverter, PWM, Harmonics, oscillation, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
159 Reliability-Based Life-Cycle Cost Model for Engineering Systems

Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski

Abstract:

The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life-cycle cost of an electric motor.

Keywords: Initial Cost, Life-cycle cost, Maintenance Cost, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
158 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: J. Modu, J. F. Georgin, L. Briançon, E. Antoinet

Abstract:

Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.

Keywords: Early age behavior, reinforced concrete, THC 3D models, wind turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406
157 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: Quasigeoid, gravity anomalies, covariance, GGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
156 Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter

Authors: A. Bennassar, A. Abbou, M. Akherraz, M. Barara

Abstract:

In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.

Keywords: Sensorless backstepping, IM, Three levels NPC inverter, Lyapunov theory, ALO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
155 Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach

Authors: M. Ouassaid, M. Cherkaoui, A. Nejmi, M. Maaroufi

Abstract:

This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.

Keywords: Integral action, Lyapunov Technique, Non Linear Control, Permanent Magnet Synchronous Motors, Torque Control, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344
154 Identification of an Mechanism Systems by Using the Modified PSO Method

Authors: Chih-Cheng Kao, Hsin- Hua Chu

Abstract:

This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slidercrank mechanism driven by a field-oriented PM synchronous motor. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance" term in the traditional PSO-s fitness function to avoid converging to a local optimum. It is found that the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.

Keywords: Slider-crank mechanism, distance, systemidentification, modified particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
153 Fuzzy Logic PID Control of Automatic Voltage Regulator System

Authors: Aye Aye Mon

Abstract:

The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Keywords: Fuzzy logic system, PID Controller, control systems, controlled A V R

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3857
152 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon

Abstract:

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
151 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: Cyclic loading, DEM, numerical modelling, sands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676