Search results for: R&D Logic Analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9132

Search results for: R&D Logic Analysis.

8832 Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)

Authors: G. Ait Abdelmalek, R. Ziani

Abstract:

In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.

Keywords: Design for reliability, design for testability, fault tolerance, manufacturing yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
8831 Ontology of Collaborative Supply Chain for Quality Management

Authors: Jiaqi Yan, Sherry Sun, Huaiqing Wang, Zhongsheng Hua

Abstract:

In the highly competitive and rapidly changing global marketplace, independent organizations and enterprises often come together and form a temporary alignment of virtual enterprise in a supply chain to better provide products or service. As firms adopt the systems approach implicit in supply chain management, they must manage the quality from both internal process control and external control of supplier quality and customer requirements. How to incorporate quality management of upstream and downstream supply chain partners into their own quality management system has recently received a great deal of attention from both academic and practice. This paper investigate the collaborative feature and the entities- relationship in a supply chain, and presents an ontology of collaborative supply chain from an approach of aligning service-oriented framework with service-dominant logic. This perspective facilitates the segregation of material flow management from manufacturing capability management, which provides a foundation for the coordination and integration of the business process to measure, analyze, and continually improve the quality of products, services, and process. Further, this approach characterizes the different interests of supply chain partners, providing an innovative approach to analyze the collaborative features of supply chain. Furthermore, this ontology is the foundation to develop quality management system which internalizes the quality management in upstream and downstream supply chain partners and manages the quality in supply chain systematically.

Keywords: Ontology, supply chain quality management, service-oriented architecture, service-dominant logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
8830 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
8829 FPGA Implementation of a Vision-Based Blind Spot Warning System

Authors: Yu Ren Lin, Yu Hong Li

Abstract:

Vision-based intelligent vehicle applications often require large amounts of memory to handle video streaming and image processing, which in turn increases complexity of hardware and software. This paper presents an FPGA implement of a vision-based blind spot warning system. Using video frames, the information of the blind spot area turns into one-dimensional information. Analysis of the estimated entropy of image allows the detection of an object in time. This idea has been implemented in the XtremeDSP video starter kit. The blind spot warning system uses only 13% of its logic resources and 95k bits block memory, and its frame rate is over 30 frames per sec (fps).

Keywords: blind-spot area, image, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
8828 The Location of Park and Ride Facilities Using the Fuzzy Inference Model

Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas

Abstract:

The paper presents a method in which the expert knowledge is applied to fuzzy inference model. Even a less experienced person could benefit from the use of such a system, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed locations can also be verified in a short time. The proposed method is intended for testing of locations of car parks in a city. The paper shows selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analyses of existing objects are also shown in the paper and they are confronted with the opinions of the system users, with particular emphasis on unpopular locations. The results of the analyses are compared to expert analysis of the P&R facilities location that was outsourced by the city and the opinions about existing facilities users that were expressed on social networking sites. The obtained results are consistent with actual users’ feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.

Keywords: Fuzzy logic inference, P&R facilities, P&R location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
8827 FPGA Implement of a Vision Based Lane Departure Warning System

Authors: Yu Ren Lin, Yi Feng Su

Abstract:

Using vision based solution in intelligent vehicle application often needs large memory to handle video stream and image process which increase complexity of hardware and software. In this paper, we present a FPGA implement of a vision based lane departure warning system. By taking frame of videos, the line gradient of line is estimated and the lane marks are found. By analysis the position of lane mark, departure of vehicle will be detected in time. This idea has been implemented in Xilinx Spartan6 FPGA. The lane departure warning system used 39% logic resources and no memory of the device. The average availability is 92.5%. The frame rate is more than 30 frames per second (fps).

Keywords: Lane departure warning system, image, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
8826 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
8825 A Simplified and Effective Algorithm Used to Mine Similar Processes: An Illustrated Example

Authors: Min-Hsun Kuo, Yun-Shiow Chen

Abstract:

The running logs of a process hold valuable information about its executed activity behavior and generated activity logic structure. Theses informative logs can be extracted, analyzed and utilized to improve the efficiencies of the process's execution and conduction. One of the techniques used to accomplish the process improvement is called as process mining. To mine similar processes is such an improvement mission in process mining. Rather than directly mining similar processes using a single comparing coefficient or a complicate fitness function, this paper presents a simplified heuristic process mining algorithm with two similarity comparisons that are able to relatively conform the activity logic sequences (traces) of mining processes with those of a normalized (regularized) one. The relative process conformance is to find which of the mining processes match the required activity sequences and relationships, further for necessary and sufficient applications of the mined processes to process improvements. One similarity presented is defined by the relationships in terms of the number of similar activity sequences existing in different processes; another similarity expresses the degree of the similar (identical) activity sequences among the conforming processes. Since these two similarities are with respect to certain typical behavior (activity sequences) occurred in an entire process, the common problems, such as the inappropriateness of an absolute comparison and the incapability of an intrinsic information elicitation, which are often appeared in other process conforming techniques, can be solved by the relative process comparison presented in this paper. To demonstrate the potentiality of the proposed algorithm, a numerical example is illustrated.

Keywords: process mining, process similarity, artificial intelligence, process conformance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
8824 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
8823 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
8822 A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation

Authors: Parvinder Singh Sandhu, Dalwinder Singh Salaria, Hardeep Singh

Abstract:

Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.

Keywords: Software Reusability, Software Metrics, Neural Networks, Genetic Algorithm, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
8821 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks

Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta

Abstract:

This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.

Keywords: GEO, ns2, Proactive TCP, SACK, Vegas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
8820 Modeling Hybrid Systems with MLD Approach and Analysis of the Model Size and Complexity

Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh

Abstract:

Recently, a great amount of interest has been shown in the field of modeling and controlling hybrid systems. One of the efficient and common methods in this area utilizes the mixed logicaldynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system by using the MLD framework. Comparing the model size of the three-tank system with that of a two-tank system, it is deduced that the number of binary variables, the size of the system and its complexity tremendously increases with the number of tanks, which makes the control of the system more difficult. Therefore, methods should be found which result in fewer mixed-integer inequalities.

Keywords: Hybrid systems, mixed-integer inequalities, mixed logical dynamical systems, multi-tank system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
8819 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern

Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe

Abstract:

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.

Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
8818 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral

Authors: H. Nemmour, Y. Chibani

Abstract:

Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.

Keywords: change detection, decision fusion, fuzzy logic, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
8817 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We then discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, Nonuniform fiber, Nonlinear pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
8816 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6249
8815 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Adaptive fuzzy controller, Hydronic heating system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
8814 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade

Abstract:

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
8813 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference

Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh

Abstract:

This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
8812 Performance Analysis of Brain Tumor Detection Based On Image Fusion

Authors: S. Anbumozhi, P. S. Manoharan

Abstract:

Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.

Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
8811 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision –making.

Keywords: Ecosystem model, Environmental security, Fuzzy logic, Sustainability of habitable regions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
8810 A Formal Implementation of Database Security

Authors: Yun Bai

Abstract:

This paper is to investigate the impplementation of security mechanism in object oriented database system. Formal methods plays an essential role in computer security due to its powerful expressiveness and concise syntax and semantics. In this paper, both issues of specification and implementation in database security environment will be considered; and the database security is achieved through the development of an efficient implementation of the specification without compromising its originality and expressiveness.

Keywords: database security, authorization policy, logic basedspecification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
8809 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
8808 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin C. Agwah, Paulinus C. Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342
8807 A Mark-Up Approach to Add Value

Authors: Ivaylo I. Atanasov, Evelina N.Pencheva

Abstract:

This paper presents a mark-up approach to service creation in Next Generation Networks. The approach allows deriving added value from network functions exposed by Parlay/OSA (Open Service Access) interfaces. With OSA interfaces service logic scripts might be executed both on callrelated and call-unrelated events. To illustrate the approach XMLbased language constructions for data and method definitions, flow control, time measuring and supervision and database access are given and an example of OSA application is considered.

Keywords: Service creation, mark-up approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
8806 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
8805 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection

Authors: C. Ardil

Abstract:

This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.

Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
8804 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
8803 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.

Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319