%0 Journal Article
	%A Erika Martinez Ramirez and  Rene V. Mayorga
	%D 2008
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 18, 2008
	%T On the Parameter Optimization of Fuzzy Inference Systems
	%U https://publications.waset.org/pdf/15939
	%V 18
	%X Nowadays, more engineering systems are using some
kind of Artificial Intelligence (AI) for the development of their
processes. Some well-known AI techniques include artificial neural
nets, fuzzy inference systems, and neuro-fuzzy inference systems
among others. Furthermore, many decision-making applications base
their intelligent processes on Fuzzy Logic; due to the Fuzzy
Inference Systems (FIS) capability to deal with problems that are
based on user knowledge and experience. Also, knowing that users
have a wide variety of distinctiveness, and generally, provide
uncertain data, this information can be used and properly processed
by a FIS. To properly consider uncertainty and inexact system input
values, FIS normally use Membership Functions (MF) that represent
a degree of user satisfaction on certain conditions and/or constraints.
In order to define the parameters of the MFs, the knowledge from
experts in the field is very important. This knowledge defines the MF
shape to process the user inputs and through fuzzy reasoning and
inference mechanisms, the FIS can provide an “appropriate" output.
However an important issue immediately arises: How can it be
assured that the obtained output is the optimum solution? How can it
be guaranteed that each MF has an optimum shape? A viable solution
to these questions is through the MFs parameter optimization. In this
Paper a novel parameter optimization process is presented. The
process for FIS parameter optimization consists of the five simple
steps that can be easily realized off-line. Here the proposed process
of FIS parameter optimization it is demonstrated by its
implementation on an Intelligent Interface section dealing with the
on-line customization / personalization of internet portals applied to
	%P 2024 - 2037