Supervisory Fuzzy Learning Control for Underwater Target Tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057779

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910

References:


[1] An, E., A comparison of AUV navigation performance: a system approach, OCEANS 2003. Proceedings , Volume: 2 , 22-26 Sept. 2003 Pages:654 - 662 Vol.2
[2] Evans, J., Petillot, Y., Redmond, P., Wilson, M. and Lane, D., AUTOTRACKER: AUV Embedded Control Architecture for Autonomous Pipeline and Cable Tracking, OCEANS 2003. Proceeding , Volume: 5 , 22-26 Sept. 2003, pp. 2651 - 2658
[3] Arjuna Balasuriya and Ura, T., Vision-based underwater cable detection and following using AUVs Oceans '02 MTS/IEEE , Volume: 3 , 29-31 Oct. 2002 Pages:1582 - 1587 vol.3
[4] Chua Kia and Mohd. Rizal Arshad, Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation, Conference Proceeding of The 2nd International conference on Mechatronics 2005, Vol. 1 , 10-12 May 2005, Pages 132-139 Vol.1.
[5] The World Deepwater Atlas, Oilfield Publications Limited (England) / Oilfield Peblications Inc. (USA).
[6] Kreyszig, Advanced Engineering Mathematics, Wayne Anderson, 1993.
[7] James, G., Burley, D., Clements, D., Dyke, P., Searl, J. and Wright, J., Modern Engineering Mathematics, Addison Wesley, 1994.
[8] Passino, K. M. and Yurkovich, S., Fuzzy Control, Addison Wesley, 1997.