Search results for: Nonlinear Transconductance
823 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Fengxia Zheng
Abstract:
By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.
Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616822 A New Version of Unscented Kalman Filter
Authors: S. A. Banani, M. A. Masnadi-Shirazi
Abstract:
This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.
Keywords: Extended Kalman Filter, Iterated EKF, Nonlinearstate estimator, Unscented Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893821 A Current Steering Positive Feedback Improved Recycling Folded Cascode OTA
Authors: S. Kumaravel, B. Venkataramani
Abstract:
In the literature, Improved Recycling Folded Cascode (IRFC) Operational Transconductance Amplifier (OTA) is proposed for enhancing the DC gain and the Unity Gain Bandwidth (UGB) of the Recycling Folded Cascode (RFC) OTA. In this paper, an enhanced IRFC (EIRFC) OTA which uses positive feedback at the cascode node is proposed for enhancing the differential mode (DM) gain without changing the unity gain bandwidth (UGB) and lowering the Common mode (CM) gain. For the purpose of comparison, IRFC and EIRFC OTAs are implemented using UMC 90nm CMOS technology and studied through simulation. From the simulation, it is found that the DM gain and CM gain of EIRFC OTA is higher by 6dB and lower by 38dB respectively, compared to that of IRFC OTA for the same power and area. The slew rate of EIRFC OTA is also higher by a factor of 1.5.
Keywords: Cascode Amplifier, CMRR, gm/ID Methodology, Recycling, Slew Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3454820 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408819 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser
Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof
Abstract:
We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.
Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483818 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A, Dunia Nuñez-P
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.Keywords: Bond graph, electrical transformer, magnetic circuits, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4587817 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows
Authors: Imad Chaddad, Andrei A. Kolyshkin
Abstract:
Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580816 Nonlinear Simulation of Harmonically Coupled Two-Beam Free-Electron Laser
Authors: M. Zahedian, B. Maraghechi, M. H. Rouhani
Abstract:
A nonlinear model of two-beam free-electron laser (FEL) in the absence of slippage is presented. The two beams are assumed to be cold with different energies and the fundamental resonance of the higher energy beam is at the third harmonic of lower energy beam. By using Maxwell-s equations and full Lorentz force equations of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth order Runge–Kutta method. In this method a considerable growth of third harmonic electromagnetic field in the XUV and X-ray regions is predicted.Keywords: Free-electron laser, Higher energy beam, Lowerenergy beam, Two-beam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347815 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium
Authors: M. Meenasaranya, S. Saravanan
Abstract:
Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875814 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762813 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System
Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao
Abstract:
The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392812 Effects of the Mass and Damping Matrix Model in the Nonlinear Seismic Response of Steel Frames
Authors: A. Reyes-Salazar, M. D. Llanes-Tizoc, E. Bojorquez, F. Valenzuela-Beltran, J. Bojorquez, J. R. Gaxiola-Camacho, A. Haldar
Abstract:
Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated to lateral vibrations are commonly used to develop the matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the nonlinear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively, when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment resisting steel frames and the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.
Keywords: Moment-resisting steel frames, consistent and concentrated mass matrices, nonlinear seismic response, Rayleigh damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410811 Exact Three-wave Solutions for High Nonlinear Form of Benjamin-Bona-Mahony-Burgers Equations
Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi
Abstract:
By means of the idea of three-wave method, we obtain some analytic solutions for high nonlinear form of Benjamin-Bona- Mahony-Burgers (shortly BBMB) equations in its bilinear form.
Keywords: Benjamin-Bona-Mahony-Burgers equations, Hirota's bilinear form, three-wave method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580810 Bifurcation Analysis of Horizontal Platform System
Authors: C. C. Wang, N. S. Pai, H. T. Yau, T. T. Liao, M. J. Jang, C. W. Lee, W. M. Hong
Abstract:
Horizontal platform system (HPS) is popularly applied in offshore and earthquake technology, but it is difficult and time-consuming for regulation. In order to understand the nonlinear dynamic behavior of HPS and reduce the cost when using it, this paper employs differential transformation method to study the bifurcation behavior of HPS. The numerical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and chaotic responses. Furthermore, the results reveal the changes which take place in the dynamic behavior of the HPS as the external torque is increased. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of horizontal platform system.Keywords: horizontal platform system, differentialtransformation method, chaotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530809 Fuzzy Boundary Layer Solution to Nonlinear Hydraulic Position Control Problem
Authors: Mustafa Resa Becan
Abstract:
Sliding mode control with a fuzzy boundary layer is presented to hydraulic position control problem in this paper. A nonlinear hydraulic servomechanism which has an asymmetric cylinder is modeled and simulated first, then the proposed control scheme is applied to this model versus the conventional sliding mode control. Simulation results proved that the chattering free position control is achieved by tuning the fuzzy scaling factors properly.
Keywords: Hydraulic servomechanism, position control, sliding mode control, chattering, fuzzy boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833808 A TFETI Domain Decompositon Solver for Von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening
Authors: Martin Cermak, Stanislav Sysala
Abstract:
In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MatLab.
Keywords: Isotropic-kinematic hardening, TFETI, domain decomposition, parallel solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760807 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control
Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi
Abstract:
In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683806 New Stabilization for Switched Neutral Systems with Perturbations
Authors: Lianglin Xiong, Shouming Zhong, Mao Ye
Abstract:
This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.
Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659805 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849804 Frequency Modulation in Vibro-Acoustic Modulation Method
Authors: D. Liu, D. M. Donskoy
Abstract:
The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.
Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511803 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.
Keywords: Generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387802 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: Fengxia Zheng, Chuanyun Gu
Abstract:
By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491801 Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.
Keywords: Nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381800 Oscillation Criteria for Nonlinear Second-order Damped Delay Dynamic Equations on Time Scales
Authors: Da-Xue Chen, Guang-Hui Liu
Abstract:
In this paper, we establish several oscillation criteria for the nonlinear second-order damped delay dynamic equation r(t)|xΔ(t)|β-1xΔ(t)Δ + p(t)|xΔσ(t)|β-1xΔσ(t) + q(t)f(x(τ (t))) = 0 on an arbitrary time scale T, where β > 0 is a constant. Our results generalize and improve some known results in which β > 0 is a quotient of odd positive integers. Some examples are given to illustrate our main results.
Keywords: Oscillation, damped delay dynamic equation, time scale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279799 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition
Abstract:
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667798 Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits
Authors: Morteza Fathipour, Samira Omidbakhsh, Kimia Khodayari
Abstract:
RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.Keywords: cut-off frequency, RF application, Silicon oninsulator, Strained Si/SiGe on insulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743797 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: Identification, Hammerstein-Wiener, optimization, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806796 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Authors: B. Selma, S. Chouraqui
Abstract:
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788795 Concrete Gravity Dams and Traveling Wave Effect along Reservoir Bottom
Authors: H. Mirzabozorg, M. Varmazyari
Abstract:
In the present article, effect of non-uniform excitation of reservoir bottom on nonlinear response of concrete gravity dams is considered. Anisotropic damage mechanics approach is used to model nonlinear behavior of mass concrete in 2D space. The tallest monolith of Pine Flat dam is selected as a case study. The horizontal and vertical components of 1967 Koyna earthquake is used to excite the system. It is found that crest response and stresses within the dam body decrease significantly when the reservoir is excited nonuniformly. In addition, the crack profiles within the dam body and in vicinity of the neck decreases.Keywords: Concrete gravity dam, dam-reservoir-foundation interaction, traveling wave, damage mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823794 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI
Authors: Elham Amini Boroujeni, Hamid Reza Momeni
Abstract:
Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888