A TFETI Domain Decompositon Solver for Von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening
Authors: Martin Cermak, Stanislav Sysala
Abstract:
In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MatLab.
Keywords: Isotropic-kinematic hardening, TFETI, domain decomposition, parallel solution.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100236
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767References:
[1] R. Blaheta, Numerical methods in elasto-plasticity, Documenta Geonica 1998, PERES Publishers, Prague, 1999.
[2] T. Brzobohaty, Z. Dostal, P. Kovar, T. Kozubek, A. Markopoulos, Cholesky decomposition with fxing nodes to stable evaluation of a generalized inverse of the stiffness matrix of a floating structure, Int. J. Numer. Methods Eng. 88 (5), 493–509, 2011.
[3] M. Cermak, T. Kozubek, An efficient TFETI based solver for elasto-plastic problems of mechanics, Advances in Electrical and Electronic Engineering 10 (1), 57–62, 2012.
[4] M. Cermak, T. Kozubek, S. Sysala, J. Valdman, A TFETI domain decomposition solver for elastoplastic problems, Appl. Math. and Comput. 231, 634–653, 2014.
[5] Z. Dost´al, D. Hor´ak, R. Kuˇcera, Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Commun. Numer. Methods Eng. 22 (12), 1155–1162, 2006.
[6] C. Farhat, J. Mandel, F-X. Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Meth. Appl. Mech. Eng. 115, 365–385, 1994.
[7] C. Farhat, F-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng. 32, 1205–1227, 1991.
[8] S. Fuˇc´ık, A. Kufner, Nonlinear Differential Equation, Elsevier, 1980.
[9] W. Han, B. D. Reddy, Plasticity: mathematical theory and numerical analysis, Springer, 1999.
[10] V. Hapla et al: FLLOP Web Page. (Online). Available: http://industry.it4i.cz/en/products/permon/
[11] A. Kossa, L. Szab´o, Exact integration of the von Mises elastoplasticity model with combined linear isotropic-kinematic hardening, International Journal of Plasticity 25, 1083–1106, 2009.
[12] T. Kozubek, A. Markopoulos, T. Brzobohat´y, R. Kuˇcera, V. Vondr´ak, Z. Dost´al, MatSol - MATLAB efficient solvers for problems in engineering, http://matsol.vsb.cz/
[13] J. Mandel, R. Tezaur, Convergence of a substructuring method with Lagrange multipliers, Numer. Math. 73, 473–487, 1996.
[14] R. Mifflin, Semismoothness and semiconvex function in constraint optimization, SIAM J. Cont. Optim. 15, 957–972, 1977.
[15] E. A. de Souza Neto, D. Peri´c, D. R. J. Owen, Computational methods for plasticity: theory and application. Wiley, 2008.
[16] L. Qi, J. Sun, A nonsmooth version of Newton’ s method, Math. Progr., 58, 353–367, 1993.
[17] B.F. Smith et al: PETSc Web page. (Online). Available: http://www.mcs.anl.gov/petsc/
[18] S. Sysala, Application of a modified semismooth Newton method to some elasto-plastic problems. Math. Comput. Simul. 82, 2004–2021, 2012.
[19] S. Sysala, Properties and simplifications of constitutive time-discretized elastoplastic operators. Z. Angew. Math. Mech., 1–23, 2013.