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Abstract—This paper addresses the stabilization issues for a class
of uncertain switched neutral systems with nonlinear perturbations.
Based on new classes of piecewise Lyapunov functionals, the stability
assumption on all the main operators or the convex combination of
coefficient matrices is avoid, and a new switching rule is introduced to
stabilize the neutral systems. The switching rule is designed from the
solution of the so-called Lyapunov-Metzler linear matrix inequalities.
Finally, three simulation examples are given to demonstrate the
significant improvements over the existing results.

Keywords—Switched neutral system, piecewise Lyapunov func-
tional, nonlinear perturbation, Lyapunov-Metzler linear matrix in-
equality.

I. INTRODUCTION

ASwitched system is a dynamical system that consists
of a finite number of subsystems and a logical rule

which orchestrates switching between these subsystems. Such
system has gained a great deal of attention mainly because
various real-world systems, such as chemical processing [1],
communication networks, traffic control [2]-[4], control of
manufacturing systems [5]-[6], automotive engine control and
aircraft control [7] can be modeled as switched systems. Large
number of excellent papers and monographs on the stability
of switched systems have been published[8]-[13] in the past.

Recently, considerable attention has been given to the
stability problems arising from neutral systems. And various
analysis techniques have been utilized to derive asymptotical
stability criteria for the systems by many researchers [14]-
[19], while the stabilization problem of neutral systems has
also been explored by some researchers [20]-[22]. To the best
of our knowledge, it seems that few people have studied the
stabilization for switched neutral control systems except for
[23]-[25]. Unfortunately, all of these articles investigate the
stability for neutral systems provided that all the neutral differ-
ence operators be stable, or there exist hurwitz linear convex
combinations of state matrices, which may be conservative
to some extent on the stability condition. In addition, the
novel switching rule was firstly designed from the solution
of so-called Lyapunov-Metzler inequalities for switched linear
systems with no delay in [26], and it is verified that is less
conservative to stabilize the switched linear systems than some
existing ones. However, this method has not been introduced
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in the switched delay systems, especially in switched neutral
systems. All of those have motivated our research.

In this paper, we are interested in the stabilization synthesis
for switched neutral systems with nonlinear perturbations.
Firstly, this paper addresses a strategy for the stabilization
of the nominal switched neutral systems. Combined with a
new class of piecewise Lyapunov functionals and the in-
troduced free weighting matrices, a switching rule ensuring
asymptotical stability of the switched neutral systems with
nonlinear perturbations is designed from the solution of the
so-called Lyapunov-Metzler linear matrix inequalities. Then,
by extending the approach to the unforced switched neutral
system with time-varying uncertainties, the robust stabilization
condition of the unforced system with uncertainties is derived.
The proposed results in this paper have two advantages: one is
the reduction of computation complexity by introducing free-
weighting matrices based on the novel piecewise Lyapunov
functionals, and the other is that the proposed state switching
rule has no stable restriction on all neutral difference operators
of the switched neutral systems or stable convex combination
of the state matrices. Finally, three simulation examples are
given to demonstrate the main results which are less conser-
vative than some existing ones.

A. Problem statement and preliminaries

Nomenclature
Rn n-dimensional real space
Rn×n set of all real n by n matrices
xT or AT transpose of vector x (or matrix A)
P > 0 (respectively, P < 0) matrix P is symmetric

positive (respectively, negative) definite
P ≥ 0 (respectively, P ≤ 0) matrix P is symmetric

positive (respectively, negative) semi-definite
* the elements below the main diagonal of a symmetric

block matrix

Consider the following switched uncertain neutral systems:

Ξ0 :

⎧⎪⎪⎨
⎪⎪⎩

ẋ (t) − Cσ(t)(t)ẋ (t − τ) = Aσ(t)(t)x (t)
+Bσ(t)(t)x (t − r) + fσ(t) (t, x (t))
+gσ(t) (t, ẋ (t − τ))

x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0]

(1)

where x (t) ∈ Rn is the state vector , r, τ > 0 are
constant time delays, H = max {τ, r} and ϕ (θ) is the
initial condition function. σ(t) ∈ M = {1, 2, · · · ,m}
is piecewise constant switching signal. This means that
the matrices (Aσ(t)(t), Bσ(t)(t), Cσ(t)(t), fσ(t) (t, x (t)),
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gσ(t) (t, ẋ (t − τ))) are allowed to take values, at an arbitrary
time, in the finite set

(Aσ(t)(t), Bσ(t)(t), Cσ(t)(t), fσ(t), gσ(t))

∈ {(A1(t), B1(t), C1(t), f1 (t, x (t)) , g1 (t, ẋ (t − τ)) ,

· · · , (Am(t), Bm(t), Cm(t), fm (t, x (t)) , gm (t, ẋ (t − τ))}. (2)

The system matrices are assumed to be uncertain and satisfy

[Ai(t), Bi(t), Ci(t)] = [Ai, Bi, Ci] + DF (t)[Eai, Ebi, Eci],
(3)

where Ai, Bi, Ci, D, Eai, Ebi, Eci are constant matrices with
appropriate dimensions for i ∈ M , and and F (t) is an un-
known, real, and possibly time-varying matrix with Lebesgue
measurable elements, satisfying

FT (t)F (t) � I. (4)

The function fi (t, x (t)), and gi (t, ẋ (t − τ)) represent the
nonlinear time-varying perturbations. It is assumed that
fi (t, 0) = 0 and gi (t, 0) = 0(i = 1, 2, · · · ,m), and

‖fi (t, x (t))‖ ≤ βi1 ‖x (t)‖ , (5a)
‖gi (t, ẋ (t − τ))‖ ≤ βi2 ‖ẋ (t − τ)‖ , (5b)

where βi1 ≥ 0, and βi2 ≥ 0 are given constants.
Constraint (5) can be rewritten as following:

fT
i (t, x (t)) fi (t, x (t)) ≤ β2

i1x
T (t) x (t) , (6a)

gT
i (t, ẋ (t − τ)) gi (t, ẋ (t − τ)) ≤ β2

i2ẋ
T (t − τ) ẋ (t − τ) .

(6b)

Where, for simplicity, fi := fi (t, x (t)), gi :=
gi (t, ẋ (t − τ)).

Before presenting the main result, we first state the
following lemmas which will be used in the proof of our
main result.

Lemma1([27]) Given matrices Q = QT , H and E of
appropriate dimensions, then

Q + HFE + ET FT HT < 0

for all F satisfying FT (t)F (t) � I , if and only if exists an
ε > 0 such that

Q + εHHT + ε−1ET E < 0

Lemma2([28]) For given matrices A11, A12, A22 with ap-
propriate dimensions,

[
A11 A12

∗ A22

]
< 0

holds if and only if A22 < 0, A11 − A12A
−1
22 AT

12 < 0.

The aim of this paper is to find a new strategy for the
stabilization of the switched uncertain neutral systems.

B. Main results

In this section, we consider the system (1) where the switch-
ing rule satisfies (2). A new approach for switching rule which
is dependent on the state for the switched neutral systems with
nonlinear perturbations will be stated as following.

It is assumed that the state vector x(t) is available for
feedback for all t � 0. That is, our goal is to determine the
function ν(•) : Rn → 1, · · · ,m such that

σ(t) = ν(x(t)) (7)

which makes the equilibrium point of (1) asymptotically
stable. In this case, it is no necessary to assume each matrix
of the set A1, · · · , Am is asymptotically stable and require the
stable convex combination of Ai, Bi, or Ai + Bi.

Let us recall the class of Metzler matrices denoted by M
which consists of all matrices Π ∈ RN×N with elements πij ,
such that

πij � 0,∀i 	= j,
N∑

i=1

πij = 0,∀j. (8)

Firstly, we study the asymptotical stabilization for the nominal
switched neutral system as following

Ξ1 :

⎧⎨
⎩

ẋ (t) − Ciẋ (t − τ) = Aix (t) + Bix (t − r)
+fi (t, x (t)) + gi (t, ẋ (t − τ))

x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] ,
(9)

fi (t, x (t)) and gi (t, ẋ (t − τ)) satisfy condition (5), the
following theorem governs the nominal system Ξ1.

Theorem 1. Assume that there symmetric positive def-
inite matrices P1, · · · , Pm, Q, R, any matrices Sij(i =
1, · · · , m, j = 1, 2, 3, · · · , 6) with appropriate dimensions and
Π ∈ RN×N , scalars ε1 > 0, ε2 > 0, βi1 > 0 and βi2 > 0
satisfying the Lyapunov-Metzler Linear matrix inequalities

ϕi =

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕi11 ϕi12 ϕi13 ϕi14 ϕi15 ϕi16

∗ ϕi22 ϕi23 ϕi24 ϕi25 ϕi26

∗ ∗ ϕi33 ϕi34 ϕi35 ϕi36

∗ ∗ ∗ ϕi44 ϕi45 ϕi46

∗ ∗ ∗ ∗ ϕi55 ϕi56

∗ ∗ ∗ ∗ ∗ ϕi66

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0 (10)

where

ϕi11 =PiAi + AT
i Pi + Q + ST

i1Ai + AT
i Si1

+
m∑

j=1

πjiPj + ε1β
2
i1I,

ϕi12 = − ST
i1 + AT

i Si2,

ϕi13 =PiBi + ST
i1Bi + AT

i Si3,

ϕi14 =PiCi + ST
i1Ci + AT

i Si4,

ϕi15 =Pi + AT
i Si5 + ST

i1,

ϕi16 =Pi + AT
i Si6 + ST

i1,

ϕi22 = − ST
i2 − Si2 + R,

ϕi23 =ST
i2Bi − Si3,

ϕi24 =ST
i2Ci − Si4,
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ϕi25 = − Si5 + ST
i2,

ϕi26 = − Si6 + ST
i2,

ϕi33 =ST
i3Bi + BT

i Si3 − Q,

ϕi34 =ST
i3Ci + BT

i Si4,

ϕi35 =BT
i Si5 + ST

i3,

ϕi36 =BT
i Si6 + ST

i3,

ϕi44 =ST
i4Ci + CT

i Si4 − R + ε2β
2
i2I,

ϕi45 =CT
i Si5 + ST

i4,

ϕi46 =CT
i Si6 + ST

i4,

ϕi55 =Si5 + ST
i5 − ε1I,

ϕi56 =Si6 + ST
i5,

ϕi55 =Si6 + ST
i6 − ε2I.

The state-switching control (7) with

ν(x(t)) = arg min
i=1,...,m

xT (t)Pix(t), (11)

makes the equilibrium solution of the systems (9) globally
asymptotically stable.

Proof. Firstly, from (6), we obtain for any scalars ε1 > 0,
ε2 > 0.

ε1

[
β2

i1x
T (t) x (t) − fT

i fi

] ≥ 0, (12a)

ε2

[
β2

i2ẋ
T (t − τ) ẋ (t − τ) − gT

i gi

] ≥ 0. (12b)

Choose a new class of piecewise Lyapunov-Krasovskii func-
tional candidate for systems (9) as following:

V (t) = min
i=1,··· ,m

{xT (t)Pix(t) +
∫ t

t−r

xT (s)Qx (s) ds

+
∫ t

t−τ

ẋT (s)Rẋ (s) ds}, (13)

Pi, Q and R are defined in theorem1. In fact, V (t) is not
differentiable for all t � 0. To analyze this aspect, the set
I(x) = {i : ν(x) = xT Pix} plays a central role since V (t)
fails to be differentiable on x ∈ Rn such that I(x) is composed
of more than one element or, in other words, when the result
of the minimization indicated in (13) is not unique [29]. For
this reason we need to deal with the Dini derivative (see[30]):

D+V (xt) = lim
h→0+

sup
V (xt+h) − V (xt)

h
(14)

Assume, in accordance to (11), that at an arbitrary t � 0,
the state-switching control is given by σ(t) = ν(x(t)) = i
for some i ∈ I(x(t)). Hence, from (14) and the system (9),
applying the result of Theorem1 of [?], we have

D+V (xt) = lim
h→0+

sup
V (xt + hẋt) − V (xt)

h

= min
l∈I(x(t))

{2xT (t)Pl[Aix (t) + Bix (t − r)

+Ciẋ (t − τ) + fi + gi] + xT (t)Qx(t)
−xT (t − r)Qx(t − r) + ẋT (t)Rẋ(t)
−ẋT (t − τ)Rẋ(t − τ)} (15)

On the other hand, from the systems (9), the following
equations are true for any appropriate dimensional matrices,
Sij(i = 1, · · · , m, j = 1, · · · , 6)

2{xT (t)ST
i1 + ẋT (t)ST

i2 + xT (t − r)ST
i3 + ẋT (t − τ)ST

i4

+ fT
i ST

i5 + gT
i ST

i6}{Aix(t) − ẋ(t) + Bix(t − r)
+ Ciẋ(t − τ) + fi + gi} = 0 (16)

Then, adding the terms on the left sides of (16) to D+V (t)
with (12), the Dini derivative of Lyapunov functional V (t)
along the trajectories of systems (9) is obtained as

D+V (xt) �2xT (t)Pi[Aix(t) + Bix(t − r) + Ciẋ(t − τ)]

+ xT (t)Qx(t) − xT (t − r)Qx(t − r)

+ ẋT (t)Rẋ(t) − ẋT (t − τ)Rẋ(t − τ)

+ 2{xT (t)ST
i1 + ẋT (t)ST

i2 + xT (t − r)ST
i3

+ ẋT (t − τ)ST
i4}{Aix(t) − ẋ(t)

+ Bix(t − r) + Ciẋ(t − τ)}
=XT (t)ϕiX(t) − ε1[β2

i1x
T (t)x(t) − fT

i fi]

− ε2[β2
i2ẋ

T (t − τ)ẋ(t − τ) − gT
i gi]

− (
m∑

i=1

πji)xT (t)Pjx(t)

where

XT (t) = [xT (t) ẋT (t) xT (t − r) ẋT (t − τ) fT
i gT

i ]

and the inequality holds from the fact that i ∈ I(x(t)).
Finally, remembering that (8) is valid for Π ∈ RN×N and that
xT (t)Pjx(t) � x(t)T Pix(t) for all j 	= i = 1, · · · ,m. There-
fore, due to the fact that i ∈ I(x(t)), using the Lyapunov-
Metzler linear matrix inequalities (10), one can further obtain
that the the Dini derivative of Lyapunov functional V (t) along
systems (9) satisfies

D+V (xt) < −xT (
m∑

i=1

πjiPj)x(t)

< −(
m∑

i=1

πji)xT (t)Pix(t) = 0.

Then it follows from the Lyapunov-Krasovskii stability
theorem that if the conditions given in theorem 1 are met,
system (9) is guaranteed to be asymptotically stable.

Remark 1. As a matter of fact, the spectrum radius of the
matrix Ci are not necessarily less than 1, and the stability
hurwitz combination of each Ai and Bi are also unnecessary.
It could be stable using the state switching law for the
neutral switched systems which can be illustrated in section4.
Furthermore, this class of switched neutral systems is a
general case of those studied in [23], [24], [25].

Remark 2. To reduce the conservative of the stability
condition brought by the second terms in the Lyapunov
functional V (xt) in (13), this theorem introduce some free
matrices which can be selected by solving the LMIs in
Theorem1. In addition, as related in [26], Theorem1 does
not require the set A1, · · · , Am be exclusively composed of
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asymptotical stable matrices. The Lyapunov-Metzler linear
matrix inequalities introduced in Theorem1 suffer the same
difficulty in [26], but fortunately a simple numerical procedure
based on line search for πij can be settled to determine its
solution.

Let fi (t, x (t)) = gi (t, ẋ (t − τ)) = 0, similar to the proof
of Theorem 1, we have the following corollary for the switched
neutral systems as

Ξ2 :
{

ẋ (t) − Ciẋ (t − τ) = Aix (t) + Bix (t − r) ,
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] . (17)

Corollary 1. Assume that there exit symmetric positive
definite matrices P1, · · · , Pm, Q, R, any matrices Sij(i =
1, · · · , m, j = 1, 2, 3, 4) with appropriate dimensions and
Π ∈ RN×N satisfying the Lyapunov-Metzler Linear matrix
inequalities

φi =

⎛
⎜⎜⎝

φi11 φi12 φi13 φi14

∗ φi22 φi23 φi24

∗ ∗ φi33 φi34

∗ ∗ ∗ φi44

⎞
⎟⎟⎠ < 0 (18)

where

φi11 =PiAi + AT
i Pi + Q + ST

i1Ai + AT
i Si1 +

M∑
j=1

πjiPj ,

φi12 = − ST
i1 + AT

i Si2,

φi13 =PiBi + ST
i1Bi + AT

i Si3,

φi14 =PiCi + ST
i1Ci + AT

i Si4,

φi22 = − ST
i2 − Si2 + R,

φi23 =ST
i2Bi − Si3,

φi24 =ST
i2Ci − Si4,

φi34 =ST
i3Ci + BT

i Si4,

φi33 =ST
i3Bi + BT

i Si3 − Q,

φi44 =ST
i4Ci + CT

i Si4 − R.

The state-switching control (3) with

ν(x(t)) = arg min
i=1,...,m

xT (t)Pix(t) (19)

makes the equilibrium solution of the systems (17) globally
asymptotically stable.

Remark 3. Unlike those switching rules designed from
some class of LMIs by means of single Lyapunov approach in
[23], [25], the switching rules in this paper are just depended
on the state of the switched neutral systems. To some extent,
it is not difficult to find that the stabilization condition for the
switched neutral systems is superior to those in [23], [25].

From Theorem 1, we can obtain a criterion for the switched
neutral system Ξ0 with time-varying structured uncertainties
described in (3) and (4).

Theorem 2. Assume that there symmetric positive def-
inite matrices P1, · · · , Pm, Q, R, any matrices Sij(i =
1, · · · , m, j = 1, 2, 3, · · · , 6) with appropriate dimensions and

Π ∈ RN×N , scalars ε1 > 0, ε2 > 0, λi > 0, βi1 > 0
and βi2 > 0 satisfying the Lyapunov-Metzler Linear matrix
inequalities

ψi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψi11 ψi12 ψi13 ψi14 ψi15 ψi16 ψi17

∗ ψi22 ψi23 ψi24 ψi25 ψi26 ST
i2D

∗ ∗ ψi33 ψi34 ψi35 ψi36 ST
i3D

∗ ∗ ∗ ψi44 ψi45 ψi46 ST
i4D

∗ ∗ ∗ ∗ ψi55 ψi56 ST
i5D

∗ ∗ ∗ ∗ ∗ ψi66 ST
i6D

∗ ∗ ∗ ∗ ∗ ∗ −λiI

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

< 0

(20)
where

ψi11 =PiAi + AT
i Pi + Q + ST

i1Ai + AT
i Si1

+
m∑

j=1

πjiPj + ε1β
2
i1I + λiE

T
aiEai,

ψi12 = − ST
i1 + AT

i Si2,

ψi13 =PiBi + ST
i1Bi + AT

i Si3 + λiE
T
aiEbi,

ψi14 =PiCi + ST
i1Ci + AT

i Si4 + λiE
T
aiEci,

ψi15 =Pi + AT
i Si5 + ST

i1,

ψi16 =Pi + AT
i Si6 + ST

i1,

ψi17 =PiD + ST
i1D

ψi22 = − ST
i2 − Si2 + R,

ψi23 =ST
i2Bi − Si3,

ψi24 =ST
i2Ci − Si4,

ψi25 = − Si5 + ST
i2,

ψi26 = − Si6 + ST
i2,

ψi33 =ST
i3Bi + BT

i Si3 − Q + λiE
T
biEbi,

ψi34 =ST
i3Ci + BT

i Si4 + λiE
T
biEci,

ψi35 =BT
i Si5 + ST

i3,

ψi36 =BT
i Si6 + ST

i3,

ψi44 =ST
i4Ci + CT

i Si4 − R + ε2β
2
i2I + λiE

T
ciEci.

ψi45 =CT
i Si5 + ST

i4,

ψi46 =CT
i Si6 + ST

i4,

ψi55 =Si5 + ST
i5 − ε1I,

ψi56 =Si6 + ST
i5,

ψi55 =Si6 + ST
i6 − ε2I.

The state-switching control (7) with

ν(x(t)) = arg min
i=1,...,m

xT (t)Pix(t), (21)

makes the equilibrium solution of the systems (1) with (3) and
(4) robust globally asymptotically stable.

Proof. Replaced Ai, Bi and Ci with the time-varying struc-
tured uncertainty form Ai + DF (t)Eai, Bi + DF (t)Ebi,
Ci+DF (t)Eci in Theorem1 respectively, (10) are transformed
as following

ψi = ϕi + ΓT
k FT (t)Γl + ΓT

l F (t)Γk (22)

where

ΓT (k) = [Eai 0 Ebi Eci 0 0]T ,
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ΓT (l) = [PiD + ST
i1D ST

i2D ST
i3D ST

i4D ST
i5D ST

i6D].

By lemma1, necessary and sufficient conditions for (22) for
Ξ0 is that there exist λi > 0 such that

ψi = ϕi + λiΓT
k F (t)Γk + λ−1

i ΓT
l Γl (23)

Applying lemma2, we find that (23) is equivalent to (20).
That is to say, the state-switching control in (21) makes the
equilibrium solution of the uncertain switched neutral systems
with nonlinear perturbations (1) robust globally asymptotically
stable.

C. Simulation examples

In order to show the effectiveness of the conditions
presented in Section 3, in this section, three examples are
provided.

Example 1. Consider the switched neutral systems (1) with
no perturbation which is equivalent to (17), the parameters of
the system are specified as follows,

A1 =
( −5 1

−0.5 1

)
, A2 =

(
1 1

1.5 −2

)
,

B1 =
( −1.6 1.4

0.8 −1

)
, B2 =

( −1 0.6
−1.5 −1.2

)
,

C1 =
( −1.2 0.4

0.69 −1.01

)
, C2 =

( −0.6 0.1
0.4 −0.3

)
,

r = 0.81, τ = 0.47, with simple computation, we know
that ρ{C1} > 1, and each subsystem is unstable. However,
choosing π11 = −29.43, π12 = 479.60, π21 = 29.43,
π22 = −479.60 and by solving LMIs in Corollary 1, we get

P1 =
(

4.7804 −1.3636
−1.3636 0.7614

)
× 103,

P2 =
(

5.1579 −1.6114
−1.6114 0.6880

)
× 103,

which means the switched neutral systems (17) is asymptoti-
cally stable by Corollary 1. Let (2,−3)T be the initial state of
the equation (17). Figs. 1-2 show the state trajectories of the
two subsystem with no switching respectively. Figs. 1-2 also
show that each of the subsystems is unstable. Fig. 3 shows that
the trajectory of the switched systems with the switched law
obtained in this paper, while fig. 4 shows that the phase map
of the switched neutral systems. Figs. 3-4 also show that the
switched neutral systems with unstable subsystems can reach
to stability rapidly using the switching rule in Corollary1.
Moreover, the criterion obtained in [23], [24], [25] can not
be applied since C1 	= C2 and ρ{C1} > 1. This shows that
our criterion is more effective than that obtained in [23], [24],
[25].

Example 2. Consider the another switched neutral systems
(17) under the same switching law as in Example 1, which
was considered in with

A1 =
( −5 1

−0.5 1

)
, A2 =

(
1 1

1.5 −2

)
,

0 2000 4000 6000 8000 10000 12000 14000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

16

Fig. 1. Behavior of the state component of the switched neutral subsystem1.

0 2000 4000 6000 8000 10000 12000 14000
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20
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Fig. 2. Behavior of the state component of the switched neutral subsystem2.
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Fig. 3. Behavior of the solution x(t) of the switched neutral systems.
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Fig. 4. The phase map of the switched neutral systems.
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B1 =
(

1.6 0.4
0 1

)
, B2 =

(
1 0.6
0 −1.2

)
,

C1 =
( −0.5 0.3

0.2 −0.7

)
, C2 =

( −0.5 0.3
0.2 −0.7

)
,

r = 0.81, τ = 0.47. It is easy to see that, neither B(i) nor
A(i) + B(i) have no stable convex combination. However,
choosing π11 = −12.43, π12 = 145.52, π21 = 12.43, π22 =
−145.52 and by solving LMIs in Corollary 1, we obtain

P1 =
(

3.7745 −0.6240
−0.6240 0.2717

)
,

P2 =
(

4.1190 −0.7526
−0.7526 0.2043

)
,

which imply the asymptotical stability of the switched neutral
systems (17). However, used the single Lyapunov approach,
the criterion obtained in [23], [24], [25] failed because of its
no stable convex combination of both B(i) and A(i) + B(i).
It also show that our criterion is less conservative than that
obtained in [23], [24], [25]. Similar to example 1, its initial
state is set as (2,−3)T , and these results are showed in Figs.
5-8. As can be seen from these figures, the switched neutral
systems with unstable subsystems converges to the origin very
quickly after several switchings.

Example 3. Consider the switched neutral systems with
nonlinear perturbations (1), with

A1 =
( −5 1

−0.5 1

)
, A2 =

(
1 1

1.5 −2

)
,

B1 =
( −1.6 1.4

0.8 −1

)
, B2 =

( −1 0.6
−1.5 −1.2

)
,

C1 =
( −0.5 0

0 −0.1

)
, C2 =

( −0.5 0
0 −0.1

)
,

f1(x(t)) = (0.07 sin(2x1(t)), 0.07 cos(−3x2(t)))

f2(x(t)) = (−0.06 cos(5x1(t)), 0.07 sin(−6x2(t)))

g1(ẋ(t−τ)) = (−0.03 cos(5ẋ1(t−τ)), 0.04 sin(−6ẋ2(t−τ)))

g2(ẋ(t−τ)) = (−0.05 cos(7ẋ1(t−τ)), 0.03 sin(−2ẋ2(t−τ)))

r = 0.79, τ = 0.46. Obviously, the perturbations fi and gi

satisfy the condition (5). Choosing π11 = −804.43, π12 =
2950.57, π21 = 804.43, π22 = −2950.57 and by solving LMIs
in Theorem 1,

P1 =
(

0.3217 −0.0944
−0.0944 0.0438

)
,

P2 =
(

0.3232 −0.0947
−0.0947 0.0436

)
,

are presented, which means that the asymptotical stability
of the switched neutral systems (1) is obtained using the
switching law in theorem 1. Similar to example 1 and 2, set
the initial state as (2,−3)T , Figs. 9-12 illustrate these results
respectively. From these figures, one can also see that the
switching rule is effective to stabilize the neutral systems with
unstable subsystems. Actually, it extend the criterion to some
extent in [23], [24], [25].

0 500 1000 1500 2000 2500 3000 3500 4000
−4500

−4000

−3500

−3000
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−2000

−1500

−1000

−500

0

500

Fig. 5. Behavior of the state component of the switched neutral subsystem1.
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Fig. 6. Behavior of the state component of the switched neutral subsystem2.
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Fig. 7. Behavior of the solution x(t) of the switched neutral systems.
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Fig. 8. The phase map of the switched neutral systems.
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Fig. 9. Behavior of the state component of the switched neutral subsystem1.

0 1000 2000 3000 4000 5000 6000 7000
−1

0

1

2

3

4

5

6

7
x 10

7

Fig. 10. Behavior of the state component of the switched neutral subsystem2.
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Fig. 11. Behavior of the solution x(t) of the switched neutral systems.
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Fig. 12. The phase map of the switched neutral systems.

II. CONCLUSION

Some new switching rules for stabilization of a class of
uncertain switched neutral systems with nonlinear perturbation
are achieved in this paper. By employing piecewise Lyapunov
functionals which are more appropriate for neutral switched
systems, more flexible state dependent switching rules for
stabilization are given in terms of the so-called Lyapunov-
Metzler LMIs. Simulation examples are given to demonstrate
the main results.
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