Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30075
Oscillation Criteria for Nonlinear Second-order Damped Delay Dynamic Equations on Time Scales

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we establish several oscillation criteria for the nonlinear second-order damped delay dynamic equation r(t)|xΔ(t)|β-1xΔ(t)Δ + p(t)|xΔσ(t)|β-1xΔσ(t) + q(t)f(x(τ (t))) = 0 on an arbitrary time scale T, where β > 0 is a constant. Our results generalize and improve some known results in which β > 0 is a quotient of odd positive integers. Some examples are given to illustrate our main results.

Keywords: Oscillation, damped delay dynamic equation, time scale.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075072

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955

References:


[1] D. -X. Chen, Oscillation of second-order Emden-Fowler neutral delay dynamic equations on time scales, Math. Comput. Modelling 51 (2010) 1221-1229.
[2] D. -X. Chen, Oscillation and asymptotic behavior for nth-order nonlinear neutral delay dynamic equations on time scales, Acta Appl. Math. 109 (2010) 703-719.
[3] D. -X. Chen and J. -C. Liu, Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Can. Appl. Math. Q. 16 (2008) 19-43.
[4] A. Zafer, On oscillation and nonoscillation of second-order dynamic equations, Appl. Math. Lett. 22 (2009) 136-141.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.
[6] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
[7] Y. Xu and Z. Xu, Oscillation criteria for two-dimensional dynamic systems on time scales, J. Comput. Appl. Math. 225 (2009) 9-19.
[8] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl. 345 (2008) 176-185.
[9] Z. Han, S. Sun and B. Shi, Oscillation criteria for a class of secondorder Emden-Fowler delay dynamic equations on time scales, J. Math. Anal. Appl. 334 (2007) 847-858.
[10] L. Erbe, A. Peterson and S. H. Saker, Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl. 329 (2007) 112-131.
[11] H. -W. Wu, R. -K. Zhuang, and R. M. Mathsen, Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations, Appl. Math. Comput. 178 (2006) 321-331.
[12] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math. 181 (2005) 92-102.
[13] B. G. Zhang and Z. Shanliang, Oscillation of second-order nonlinear delay dynamic equations on time scales, Comput. Math. Appl. 49 (2005) 599-609.
[14] Y. S┬© ahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. 63 (2005) 1073-1080.
[15] L. Ou, Atkinson-s super-linear oscillation theorem for matrix dynamic equations on a time scale, J. Math. Anal. Appl. 299 (2004) 615-629.
[16] M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comput. Modelling 40 (2004) 249-260.
[17] R. P. Agarwal, D. O-Regan and S. H. Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl. 300 (2004) 203-217.
[18] O. Doˇsl'y and S. Hilger, A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, J. Comput. Appl. Math. 141 (2002) 147-158.
[19] R. P. Agarwal, M. Bohner, D. O-Regan and A. Peterson, Dynamic equations on time scales: a survey, in: R.P. Agarwal, M. Bohner, D. O-Regan (Eds.), Special Issue on "Dynamic Equations on Time Scales", J. Comput. Appl. Math. 141 (2002) 1-26.
[20] R. P. Agarwal, S. R. Grace and D. O-Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London, 2003.
[21] G. Sh. Guseinov and B. Kaymakc┬©alan, On a disconjugacy criterion for second-order dynamic equations on time scales, in: R.P. Agarwal, M. Bohner, D. O-Regan (Eds.), Special Issue on "Dynamic Equations on Time Scales", J. Comput. Appl. Math. 141 (2002) 187-196.
[22] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for secondorder nonlinear dynamic equations on time scales, J. London Math. Soc. 67 (2003) 701-714.
[23] L. Erbe and A. Peterson, An oscillation result for a nonlinear dynamic equations on a time scale, Canad. Appl. Math. Quart. 11(2003) 143-158.
[24] M. Bohner, L. Erbe and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale, J. Math. Anal. Appl. 301 (2005) 491-507.
[25] S. H. Saker, R. P. Agarwal and D. O-Regan, Oscillation of second-order damped dynamic equations on time scales, J. Math. Anal. Appl. 330 (2007) 1317-1337.
[26] L. Erbe, T. S. Hassan and A. Peterson, Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comput. 203 (2008) 343-357.
[27] S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math. 187 (2006) 123-141.
[28] G. H. Hardy, J. E. Littlewood and G. P'olya, Inequalities (second ed.), Cambridge University Press, Cambridge, 1988.