Search results for: wavy wall.
546 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure
Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard
Abstract:
In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.
Keywords: Cavity, natural convection, Nusselt number, wavy wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358545 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: Entropy generation, mixed convection, conjugate heat transfer, numerical, nanofluid, wall waviness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046544 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid
Authors: Cha’o-Kuang Chen, Ching-Chang Cho
Abstract:
This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.
Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991543 Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate
Authors: M. Si Abdallah, B. Zeghmati
Abstract:
A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.
Keywords: Free convection, wavy surface, inclined surface, thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331542 Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater
Authors: Abhishek Priyam, Prabha Chand
Abstract:
A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent higher than those of plane solar air heater. The obtained results for wavy fin solar air heaters are compared with the available experimental data of most common type solar air heaters.
Keywords: Wavy fin, aspect ratio, solar air heater, thermal efficiency, collector efficiency factor, temperature rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890541 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows
Authors: H.Y. Lai, S. C. Chang, W. L. Chen
Abstract:
The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.
Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501540 Numerical Study of Fluid Mixing in a Grooved Micro-Channel with Wavy Sidewalls
Authors: Yu-Sin Lin, Chih-Yang Wu, Yung-Ching Chu
Abstract:
In this work, we perform numerical simulation of fluid mixing in a floor-grooved micro-channel with wavy sidewalls which may impose perturbation on the helical flow induced by the slanted grooves on the channel floor. The perturbation is caused by separation vortices in the recesses of the wavy-walled channel as the Reynolds number is large enough. The results show that the effects of the wavy sidewalls of the present micromixer on the enhancement of fluid mixing increase with the increase of Reynolds number. The degree of mixing increases with the increase of the corrugation angle, until the angle is greater than 45 degrees. Besides, the pumping pressure of the micromixer increases with the increase of the corrugation angle monotonically. Therefore, we would suggest setting the corrugation angle of the wavy sidewalls to be 45 degrees.
Keywords: Fluid mixing, grooved channel, microfluidics, separation vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225539 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels
Authors: Esam M. Alawadhi, Raed I. Bourisli
Abstract:
Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913538 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918537 Numerical Simulation of Thermo-Fluid Behavior in Wavy Microchannel Used in Microelectronic Devices
Authors: A. Balabel, A. F. Khadrawi, Ali S. Al-Osaimy
Abstract:
The hydrodynamic and thermal behaviors of fluid flow in wavy microchannel are investigated numerically. Effects of Reynolds number on the hydrodynamics and thermal behaviors are investigated. Three cases of Reynolds number (580, 1244, and 1910) are adopted in this study. It is found that the separation zone begin appears when Reynolds number is greater than 1910 at the endsection of the wave. Also it is found that dimensionless maximum velocity at the mid-section of the wave decreases and becomes as a turbulent behavior as Reynolds numbers increases. The maximum temperature at the center line at the mid-section of the wave increases as Reynolds number increases until it reaches the turbulent behavior when Reynolds number is equal or greater than 1244, while this behavior will be achieved at very high velocities at the end section of the wave.Keywords: Thermo-Fluid Behavior, Microelectronic Devices, Numerical Simulation, Wavy Microchannel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355536 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall
Authors: Snehal R. Pathak, Sachin S. Munnoli
Abstract:
Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517535 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers
Authors: A. Taheri
Abstract:
Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.
Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3642534 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls
Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali
Abstract:
Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of a 64-ft deep excavation in mixed stiff soil conditions supported by cantilever pile wall. A series of finite element analysis has been carried out in Plaxis 2D by varying the pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of the wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of the wall. The finite element analysis results are compared with the field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of the 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.
Keywords: Excavations, support systems, wall stiffness, cantilever walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443533 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels
Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin
Abstract:
Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.
Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3313532 Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes
Authors: V.D. Hatamipour, M.A. Akhavan-Behabadi
Abstract:
Evaporator is an important and widely used heat exchanger in air conditioning and refrigeration industries. Different methods have been used by investigators to increase the heat transfer rates in evaporators. One of the passive techniques to enhance heat transfer coefficient is the application of microfin tubes. The mechanism of heat transfer augmentation in microfin tubes is dependent on the flow regime of two-phase flow. Therefore many investigations of the flow patterns for in-tube evaporation have been reported in literatures. The gravitational force, surface tension and the vapor-liquid interfacial shear stress are known as three dominant factors controlling the vapor and liquid distribution inside the tube. A review of the existing literature reveals that the previous investigations were concerned with the two-phase flow pattern for flow boiling in horizontal tubes [12], [9]. Therefore, the objective of the present investigation is to obtain information about the two-phase flow patterns for evaporation of R-134a inside horizontal smooth and microfin tubes. Also Investigation of heat transfer during flow boiling of R-134a inside horizontal microfin and smooth tube have been carried out experimentally The heat transfer coefficients for annular flow in the smooth tube is shown to agree well with Gungor and Winterton-s correlation [4]. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, wavy-annular flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Weber number for the vapor versus weber number for the liquid flow map and mass flux versus vapor quality flow map. The transition from wavy-annular flow to annular or stratified-wavy flow is identified in the flow maps.Keywords: Flow boiling, Flow pattern, Heat transfer, Horizontal, Smooth tube, Microfin tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330531 Experimental Investigation on Cold-formed Steel Wall Plate System
Authors: A. L. Y. Ng, W. H. Hii
Abstract:
A series of tests on cold-formed steel (CFS) wall plate system subjected to uplift force at the mid span of the wall plate is presented. The aim of the study was to study the behaviour and identify the modes of failure of CFS wall plate system. Two parameters were considered in these studies: 1) different dimension of U-bracket at the supports and 2) different sizes of lipped C-channel. The lipped C-channels used were C07508, C07512 and C10012. The dimensions of the leg of U-bracket were 50x35 mm and 50x60 mm respectively, where 25 mm clearance was provided to the connections for specimens with clearance. Results show that specimens with and without clearance experienced the same mode of failure. Failure began with the yielding of the connectors followed by distortional buckling of the wall plate. However, when C075 sections were used as wall plate, the system behaved differently. There was a large deformation in the wall plate and failure began in the distortional buckling of the wall plate followed by bearing of the connecting plates at the supports (U-bracket). The ultimate strength of the system also decreased dramatically when C075 sections were used.
Keywords: Cold-formed steel, wall plate system, distortional buckling, full scale laboratory test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196530 Design of Rigid L- Shaped Retaining Walls
Authors: A. Rouili
Abstract:
Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0.5 to 0.7 ensure in most case the stability requirements, however, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.
Keywords: Cantilever wall, proportioning, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9436529 Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes
Authors: Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.Keywords: Secondary curvature, Sinusoidal wavy tubes, Mixing Characteristics, Pulsatile flow, Hemodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594528 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater
Authors: Abhishek Priyam, Prabha Chand
Abstract:
Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.
Keywords: Channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065527 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: Bubbly flows, log law, boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127526 Application of Flexi-Wall in Noise Barriers Renewal
Authors: B. Daee, H. M. El Naggar
Abstract:
This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.Keywords: Noise barrier, Polyurethane Foam, Accelerated construction, Full-scale experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940525 Assessment of the Accuracy of Spalart-Allmaras Turbulence Model for Application in Turbulent Wall Jets
Authors: A. M. Tahsini
Abstract:
The Spalart and Allmaras turbulence model has been implemented in a numerical code to study the compressible turbulent flows, which the system of governing equations is solved with a finite volume approach using a structured grid. The AUSM+ scheme is used to calculate the inviscid fluxes. Different benchmark problems have been computed to validate the implementation and numerical results are shown. A special Attention is paid to wall jet applications. In this study, the jet is submitted to various wall boundary conditions (adiabatic or uniform heat flux) in forced convection regime and both two-dimensional and axisymmetric wall jets are considered. The comparison between the numerical results and experimental data has given the validity of this turbulence model to study the turbulent wall jets especially in engineering applications.Keywords: Wall Jet, Heat transfer, Numerical Simulation, Spalart-Allmaras Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768524 Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions
Authors: Taewon Seo
Abstract:
The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.
Keywords: Carotid artery, Fluid-structure interaction, Hemodynamics, Wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867523 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation
Authors: Ahmed S. Abdulrasool
Abstract:
Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.Keywords: Lime-sand wall, bearing capacity, circular foundation, clay soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217522 Hygric Performance of a Sandstone Wall Retrofitted with Interior Thermal Insulation
Authors: J. Maděra, M. Jerman, R. Černý
Abstract:
Temperature, relative humidity and overhygroscopic moisture fields in a sandstone wall provided with interior thermal insulation were calculated in order to assess the hygric performance of the retrofitted wall. Computational simulations showed that during the time period of 10 years which was subject of investigation no overhygroscopic moisture appeared in the analyzed building envelope so that it performed in a satisfactory way from the hygric point of view.Keywords: Sandstone wall, interior thermal insulation, moisture, computational modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539521 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343520 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.
Keywords: Thermal simulation, Double Glass Wall, Velocity field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094519 Seismic Behavior of Thin Shear Wall under the Exerted Loads
Authors: Ali A. Ofoghi
Abstract:
While the shear walls are not economical in buildings, thin shear walls are widely used in the buildings. In the present study, the ratio of different loads to their plasticity and seismic behavior of the wall under different loads have been investigated. Modeling and analysis are carried out by the finite element analysis software ABAQUS. The results show that any increase in the exerted loads will have adverse effects on the seismic behavior of the thin shear walls and causes the wall to collapse by small displacements.Keywords: Thin shear wall, nonlinear dynamic analysis, reinforced concrete, plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946518 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles
Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar
Abstract:
The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.Keywords: Combustion chamber, injector, liquid rocket, rocket engine wall heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502517 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888