%0 Journal Article
	%A V.D. Hatamipour and  M.A. Akhavan-Behabadi
	%D 2010
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 45, 2010
	%T Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes
	%U https://publications.waset.org/pdf/9289
	%V 45
	%X Evaporator is an important and widely used heat
exchanger in air conditioning and refrigeration industries. Different
methods have been used by investigators to increase the heat transfer
rates in evaporators. One of the passive techniques to enhance heat
transfer coefficient is the application of microfin tubes. The
mechanism of heat transfer augmentation in microfin tubes is
dependent on the flow regime of two-phase flow. Therefore many
investigations of the flow patterns for in-tube evaporation have been
reported in literatures. The gravitational force, surface tension and
the vapor-liquid interfacial shear stress are known as three dominant
factors controlling the vapor and liquid distribution inside the tube. A
review of the existing literature reveals that the previous
investigations were concerned with the two-phase flow pattern for
flow boiling in horizontal tubes [12], [9]. Therefore, the objective of
the present investigation is to obtain information about the two-phase
flow patterns for evaporation of R-134a inside horizontal smooth and
microfin tubes. Also Investigation of heat transfer during flow
boiling of R-134a inside horizontal microfin and smooth tube have
been carried out experimentally The heat transfer coefficients for
annular flow in the smooth tube is shown to agree well with Gungor
and Winterton-s correlation [4]. All the flow patterns occurred in the
test can be divided into three dominant regimes, i.e., stratified-wavy
flow, wavy-annular flow and annular flow. Experimental data are
plotted in two kinds of flow maps, i.e., Weber number for the vapor
versus weber number for the liquid flow map and mass flux versus
vapor quality flow map. The transition from wavy-annular flow to
annular or stratified-wavy flow is identified in the flow maps.
	%P 898 - 904