Search results for: electrode coating
364 Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches
Authors: Sergey M. Karabanov, Dmitry V. Suvorov
Abstract:
Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance.
Keywords: Contact resistance, electrode coating, electrolythic deposition, magnetically controlled MEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821363 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator
Authors: Kyoungjin Kim
Abstract:
Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135362 Effect of Rotating Electrode
Authors: S. Gnapowski, H. Akiyama, S. Hamid R. Hosseini, C. Yamabe
Abstract:
A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s
Keywords: Rotating electrode, input power, onset voltage, discharge canal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137361 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process
Authors: Vineet Srivastava, Pulak M. Pandey
Abstract:
Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368360 Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye
Authors: Jayesh P. Ruparelia, Bhavna D. Soni
Abstract:
Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.
Keywords: Electrochemical-oxidation, RB- dye, Decolorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689359 Preparation of Protective Coating Film on Metal Alloy
Authors: Rana Th. A. Al-Rubaye
Abstract:
A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in – situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physicochemical properties were investigated using X-ray diffraction (XRD), Electron Microscopy (SEM), Energy Dispersive X–ray Analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC).Keywords: FeCrAlloy, Zeolite ZSM-5. Zeolite coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843358 Properties of Glass-Ionomer Cements Sealed with Petroleum Jelly or Wax
Authors: Samantha E. Booth, Andrew D. Deacon, Nichola J. Coleman
Abstract:
A study has been carried out to determine the effect of coating two commercial glass-ionomer cements in either petroleum jelly or wax. After coating, specimens were stored in water for 24 or 168 hours, then the coating removed and the surface examined. Coating in wax was found to increase the surface hardness significantly compared with the uncoated control, whereas coating the specimens in petroleum jelly led to only a slight increase in surface hardness. Coating in wax led to no detectable ion release after either 24 or 168 hours, though there was some ion release after the coating had been removed and the specimens exposed to water for a further 24 hours. This shows that soluble species remained in these specimens. Overall, this study confirms the idea that immature glass-ionomers should be protected from early exposure to moisture, and that the protection offered by petroleum jelly is only modest.Keywords: Coating, Glass-Ionomer Cements, Ion Release, Surface Hardness, Wax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4586357 Study of Parameters Affecting the Electrostatic Attractions Force
Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh
Abstract:
This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.
Keywords: Electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, Electroadhesive grippers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804356 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells
Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe
Abstract:
Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.Keywords: CNT incorporation, ITO electrode, spin coating, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827355 SEM and AFM Investigations of Surface Defects and Tool Wear of Multilayers Coated Carbide Inserts
Authors: Ayman M. Alaskari, Samy E. Oraby, Abdulla I. Almazrouee
Abstract:
Coated tool inserts can be considered as the backbone of machining processes due to their wear and heat resistance. However, defects of coating can degrade the integrity of these inserts and the number of these defects should be minimized or eliminated if possible. Recently, the advancement of coating processes and analytical tools open a new era for optimizing the coating tools. First, an overview is given regarding coating technology for cutting tool inserts. Testing techniques for coating layers properties, as well as the various coating defects and their assessment are also surveyed. Second, it is introduced an experimental approach to examine the possible coating defects and flaws of worn multicoated carbide inserts using two important techniques namely scanning electron microscopy and atomic force microscopy. Finally, it is recommended a simple procedure for investigating manufacturing defects and flaws of worn inserts.Keywords: AFM, Coated inserts, Defects, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050354 Technology of Thermal Spray Coating Machining
Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová
Abstract:
This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials – cermets – is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.
Keywords: Coating, aerospace, plasma, grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3803353 A Matrix Evaluation Model for Sustainability Assessment of Manufacturing Technologies
Authors: Q. Z. Yang, B. H. Chua, B. Song
Abstract:
Technology assessment is a vital part of decision process in manufacturing, particularly for decisions on selection of new sustainable manufacturing processes. To assess these processes, a matrix approach is introduced and sustainability assessment models are developed. Case studies show that the matrix-based approach provides a flexible and practical way for sustainability evaluation of new manufacturing technologies such as those used in surface coating. The technology assessment of coating processes reveals that compared with powder coating, the sol-gel coating can deliver better technical, economical and environmental sustainability with respect to the selected sustainability evaluation criteria for a decorative coating application of car wheels.
Keywords: Evaluation matrix, sustainable manufacturing, surface coating, technology assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635352 Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-cut Papaya (Carica papaya)
Authors: Basharat Yousuf, Abhaya K. Srivastava
Abstract:
Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss.Keywords: Coating, fresh-cut, gum, papaya, psylllium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812351 Development of a Brain Glutamate Microbiosensor
Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill
Abstract:
This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection.
Keywords: Brain, Glutamate, Microbiosensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860350 The Performance of PVD Coated Grade in Milling of ADI 800
Authors: M. Ibrahim Sadik, Toril Myrtveit
Abstract:
The aim of this investigation is to study the performance of the new generation of the PVD coated grade and to map the influence of cutting conditions on the tool life in milling of ADI (Austempered Ductile Iron). The results show that chipping is the main wear mechanism which determines the tool life in dry condition and notch wear in wet condition for this application. This due to the different stress mechanisms and preexisting cracks in the coating. The wear development shows clearly that the new PVD coating (C20) has the best ability to delay the chipping growth. It was also found that a high content of Al in the new coating (C20) was especially favorable compared to a TiAlN multilayer with lower Al content (C30) or CVD coating. This is due to fine grains and low compressive stress level in the coating which increase the coating ability to withstand the mechanical and thermal impact. It was also found that the use of coolant decreases the tool life with 70-80% compare to dry milling.Keywords: Austempered Ductile Iron (ADI), coating, chipping, milling, tool performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935349 Influence of Machining Process on Surface Integrity of Plasma Coating
Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič
Abstract:
For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.
Keywords: Machining, plasma sprayed coating, surface integrity, strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014348 An Advanced Technology for Renovation of Extruding Shafts
Authors: Dimitar Karastoyanov, Vladimir Monov
Abstract:
The paper is concerned with the technological process of renovation of shafts used in industrial manufacturing for extruding of sheet material. In the classical renovation technologies, a chrome based coating is applied to the working surface of the shaft in galvanic baths. The process, however, is known to be exclusively harmful due to the waste cyanide products. In this work, we present an advanced nanotechnology based on nonelectric chemical laying of a nickel coating with included nanoparticles. The technology is environmentally harmless and the new coating features an increased hardness and wear resistance. Results from experimental tests of the nanostructured nickel coating are presented and discussed.Keywords: Materials processing, nanoparticles, nickel coating, shafts renovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872347 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording
Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen
Abstract:
We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.
Keywords: Impedance, neural interface, split-ring electrode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599346 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia
Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho
Abstract:
This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.Keywords: Carbon silicon, drug delivery system, iontophoresis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707345 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress
Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu
Abstract:
The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and resistance to annealing softening. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.Keywords: DC plating, internal stress, leveling power, Ni-Mn coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021344 Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery
Authors: Fitria Rahmawati, Nuryani, Liviana Wijayanti
Abstract:
This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.Keywords: Cu-TiO2, electrode, graphite substrate, Li-ion battery, TiO2 layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956343 Titanium-Aluminum Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.
Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583342 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches
Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin
Abstract:
The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.
Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732341 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking
Authors: M. Bahgat, H. Hanafy, H. Al-Tassan
Abstract:
Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.Keywords: Ironmaking, coating, steel dust, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940340 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources
Authors: Raj Kumar Rajak, Bharat Mishra
Abstract:
Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.
Keywords: Bio-batteries, cow’s urine, electrodes, non-conventional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947339 Switching Behaviors of HfO2/NiSix Based RRAM
Authors: Z. X. Chen, Z. Fang, X. P. Wang, G. -Q. Lo, D. -L. Kwong, Y. H. Wu
Abstract:
This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.
Keywords: HfO2-based, Ni-silicide, NiSi, resistive RAM (RRAM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924338 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material
Authors: S. Nouri
Abstract:
In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.
Keywords: Gamma-TiAl alloy, Si-aluminide coating, slurry procedure, high temperature oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673337 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath
Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng
Abstract:
This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.
Keywords: Supercritical CO2, zinc-electroplating, sodium fluoride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060336 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method
Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar
Abstract:
In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.
Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318335 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells
Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos
Abstract:
Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.Keywords: Counter electrodes, dye-sensitized solar cells, quasisolid state electrolyte, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278