Influence of Machining Process on Surface Integrity of Plasma Coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33126
Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: Machining, plasma sprayed coating, surface integrity, strengthening.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1315925

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017

References:


[1] Š. Houdková Šimůnková, R. Enžl, O. Bláhová, Žárové nástřiky: Moderní technologie povrchových úprav. (Online). 2003 (cit. 2017-11-15). Available from: http://www.kmm.zcu.cz/CD/content/14.html.
[2] TSTcoating.com. Thermal barrier (online). 2016 (cit.2017-11-15). Available from z: http://www.tstcoatings.com/thermal_barrier.html.
[3] Mmspektrum.com. Technologie žárového nástřiku v leteckém průmyslu. (Online). 2001 (cit. 2017-11-18). A z:http://www.mmspektrum.com/-clanek/technologie-zaroveho-nastriku-v-leteckem-prumyslu.html.
[4] Oerlikon.com. Pure Metal, Alloy, Clad Composite, and Blended Powders for Thermal Spray (online). 2017 (cit.2017-03-20). Available from: https://www.oerlikon.com/metco/en/products/services/coating/materials/coating-materials-thermal-spray/metals-alloys-composites-blends/.
[5] ČSN EN ISO 14924. Žárové stříkání: Dodatečné úpravy a konečná úprava žárově stříkaných povlaků. Praha: Český normalizační institut, 2005.
[6] Hanyko-praha.cz. Zkouška tvrdosti podle Rockwella. (Online). 2016 (cit.2017-11-18). Available from: https://www.hanyko/praha.cz/-produkty/tvrdomery/co-je-tvrdost-a-jak-se-meri/zkouska-tvrdosti-podle-rockwella.
[7] D. Carou, J. Řehoř, P. Monka, I. Vilček, Š. Houdková, Insights for the selection of the machining parameters in the turning of difficult-to-cut coatings (2015) Manufacturing Technology, 15(3), 295-303. June 2015, ISSN 2013-2489.
[8] O. Ambrož, J. Kašpar, Žárové nástřiky a jejich průmyslové využití.1. vyd. Praha: SNTL, 1990. 320 s. ISBN 80-03-00347-4.