Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Development of a Brain Glutamate Microbiosensor

Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill


This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection. 

Keywords: Brain, glutamate, Microbiosensor

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505


[1] S. Baltan, “Ischemic injury to white matter: an age-dependent process,” Neuroscientist, 15(2), 2009, pp. 126-33.
[2] A. Camacho, and L. Massieu, “Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death,” Archives of medical research, 37(1), 2006, pp. 11-8.
[3] C. R. Breese, R. Freedman, S. S. Leonard, “Research report: Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers,” Brain Research, 674, 1995, pp. 82- 90.
[4] T. L. Babb, Z. Ying, J. Hadam, and C. Penrod, “Glutamate receptor mechanisms in human epileptic dysplastic cortex,” Epilepsy Research, 32, 1998, pp. 24-33.
[5] S. C. Buckingham, and S. Robel, “Glutamate and tumor-associated epilepsy: Glial cell dysfunction in the peritumoral environment,” Neurochemistry International, 2013.
[6] N. Fayed, P. J. Modrego, and G. Rojas-Salinas, and K. Aguilar, “Brain Glutamate Levels Are Decreased in Alzheimer's Disease : A Magnetic Resonance Spectroscopy Study,” American Journal of Alzheimer's Disease and Other Dementias, 26 (6), 2011, pp. 450-456.
[7] Y. Gong, C. F. Lippa, J. Zhu, Q. Lin, and A. L. Rosso, “Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer's disease,” Brain Research, 1292, 2009, pp. 191-298.
[8] A. W. Amara, R. L. Watts, , and H. C. Walker, “The effects of deep brain stimulation on sleep in Parkinson's disease,” Therapeutic Advances in Neurological Disorders, 4(1), 2011, pp. 15-24.
[9] T. S. Rao, K. D. Lariosa-Willingham, and N. Yu, “Glutamate-dependent glutamine, aspartate and serine release from rat cortical glial cell cultures,” Brain Research, 978, 2003, pp. 213-222.
[10] N. Kang, J. Xu, Q. Xu, M. Nedergaard, and J. Kang, “Astrocytic Glutamate Release-Induced Transient Depolarization and Epileptiform Discharges in Hippocampal CA1 Pyramidal Neurons,” J. Neurophysiol, 94, 2005, pp. 4121-4130.
[11] B. Benz, G. Grima, and K. Q. Do, “Glutamate-induced homocysteic acid release from astrocytes: Possible implication in glia-neuron signalling,” Neuroscience, 124, 2004, pp. 377–386.
[12] W. H. Church, C. S. Lee, and K. M. Dranchak, “Capillary electrophoresis of glutamate and aspartate in rat brain dialysate: Improvements in detection and analysis time using cyclodextrins,” Journal of Chromatography B, 700, 1997, pp. 67-7.
[13] S. Tucci, C. Pinto J. Goyo, P. Rada, and L. Hernandez, “Measurement of Glutamine and Glutamate by Capillary Electrophoresis and Laser Induced Fluorescence Detection in Cerebrospinal Fluid of Meningitis Sick Children,” Clinical Biochemistry, 31(3), 1998, pp. 143-150.
[14] F. Xu, M. Gao, L. Wang, and L. Jin, “Study on the effect of electromagnetic impulse on neurotransmitter metabolism in nerve cells by high-performance liquid chromatography–electrochemical detection coupled with microdialysis,” Analytical Biochemistry, 307, 2002, pp. 33- 39.
[15] S. Tucci, P. Rada, M. J. Sepulveda, and L. Hernandez, “Glutamate measured by 6-s resolution brain microdialysis: Capillary electrophoretic and laser-induced fluorescence detection application,” Journal of Chromatography B, 694, 1997, pp. 343-349.
[16] Y. Yu, Q. Sun, T. Zhou, M. Zhu, L. Jin, and G. Shi, “On-line microdialysis system with poly(amidoamine)-encapsulated Pt nanoparticles biosensor for glutamate sensing in vivo,” Bioelectrochemistry, 81, 2011, pp. 53-5.
[17] N. Wahono, P. Qin, P. Oomen, T. I. F. Cremers, M. G. de Vries, and B. H. C. Westerink, “Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors,” Biosensors and Bioelectronics, 33(1), 2012, pp. 260-266.
[18] M. G. Garguilo, and A. C. Michael, “Amperometric microsensors for monitoring choline in the extracellular fluid of brain,” Journal of Neuroscience Methods, 70(1), 1996, pp. 73-82.
[19] J. P. Lowry, M. Miele, R. D. O'Neill, M. G. Boutelle, and M. Fillenz, “An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats,” Journal of Neuroscience Methods, 79, 1998, pp. 65-74.
[20] C. P. McMahon, S. J. Killoran, S. M. Kirwan, and R. D. O'Neill, “The selectivity of electrosynthesised polymer membranes depends on the electrode dimensions: implications for biosensor applications,” Chem Comm, 2004, pp. 2128-2130.
[21] N. Hamdi, J. Wang, and H. G. Monbouquette, “Polymer films as permselective coatings for H2O2-sensing electrodes,” Journal of Electroanalytical Chemistry, 581, 2005, pp. 258-264.
[22] S. Myler, S. Eaton, and S. P. J. Higson, “Poly (o-Phenylenediamine) ultra thin polymer-film composite membranes for enzyme electrodes,” Analytica Chimica Acta, 357, 1997,pp. 55-61.
[23] J. D. Craig, and R. D. O’Neill, “Electrosynthesis and permselective characterisation of phenol-based polymers for biosensor applications,” Analytica Chimica Acta, 495, 2003, pp. 33-43.
[24] S. A. Rothwell, C. P. McMahon, and R. D. O’Neill, “Effects of polymerization potential on the permselectivity of poly(ophenylenediamine) coatings deposited on Pt–Ir electrodes for biosensor applications,” Electrochimica Acta, 55, 2010, pp. 1051-1060.
[25] C. P. McMahon, G. Rocchita, S. M. Kirwan, S. J. Killoran, P. A. Serra, J. P. Lowry, and R. D. O'Neill, “Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycationenhanced substrate sensitivity,” Biosensors and Bioelectronics, 22, 2007, pp. 1466-1473.
[26] S. J. Killoran, and R. D. O’Neill, “Characterization of permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications,” Electrochimica Acta, 53, 2008, pp. 7303-7312.
[27] B. M. Dixon, J. P. Lowry, R. D. O’Neill, “Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose,” Journal of Neuroscience Methods, 119, 2002, pp. 135-142.
[28] J. C. Vidal, E. Garcia, and J. R. Castillo, “In situ preparation of overoxidized PPyroPPD bilayer biosensors for the determination of glucose and cholesterol in serum,” Sensors and Actuators B, 57, 1999, pp. 219-226.
[29] Z. M. Zain, R. D. O'Neill, J. P. Lowry, K. W. Pierce, M. Tricklebank, A. Dewa, and S. A. Ghani, “Development of an implantable D-serine biosensor for in vivo monitoring using mammalian D-amino acid oxidase on a poly (o-phenylenediamine) and Nafion-modified platinum– iridium disk electrode,” Biosensors and Bioelectronics, 25, 2010, pp. 1454-1459.
[30] K. B. O'Brien, S. J. Killoran, R. D. O'Neill, and J. P. Lowry, “Development and characterization in vitro of a catalase-based biosensor for hydrogen peroxide monitoring,” Biosensors and Bioelectronics, 22 (12), 2007, pp. 2994-3000.
[31] M. C. Angulo, A. S. Kozlov, S. Charpak and E. Audinat, “Glutamate released from glial cells synchronizes neuronal activity in the hippocampus,” The Journal of Neuroscience, 24 (31), 2004, pp. 6920- 6927.