Switching Behaviors of HfO2/NiSix Based RRAM
Authors: Z. X. Chen, Z. Fang, X. P. Wang, G. -Q. Lo, D. -L. Kwong, Y. H. Wu
Abstract:
This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.
Keywords: HfO2-based, Ni-silicide, NiSi, resistive RAM (RRAM).
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087774
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922References:
[1] Y. Y. Chen, G. Pourtois, X. P. Wang, C. Adelmann, L. Goux, B. Govoreanu, L. Pantisano, S. Kubicek, L. Altimime, M. Jurczak, J. A. Kittl, G. Groeseneken, and D. J. Wouters, “Switching by Ni filaments in a HfO2 matrix: a new pathway to improved unipolar switching RRAM,” IEEE International Memory Workshop (IMW), 2011, pp. 1-4.
[2] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEDM Tech. Dig., 2005, pp. 750–753.
[3] C. H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F. T. Chen, and M.-J. Tsai, “Threedimensional 4F2 ReRAM cell with CMOS logic compatible process”, in IEDM Tech Dig., 2010, pp. 664-667.
[4] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM”, in IEDM Tech Dig., 2008, pp. 297-300.
[5] Y. H. Tseng C.-E Huang, C.-H. Kuo, Y.-D. Chih, C. J Lin, “High density and ultra small cell size of contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits”, in IEDM Tech Dig., 2009, pp. 109-112.
[6] C. H. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang, C. M. Hu, and F.-L. Yang, “9nm half-pitch functional resistive memory cell with <1μA programming current using thermally oxidized substoichiometric WOx film”, in IEDM Tech Dig., 2010, pp. 436-439.
[7] C. H. Cheng, C. Y. Tsai, Albert Chin, and F. S. Yeh, “High performance ultra-low energy RRAM with good retention and endurance”, in IEDM Tech Dig., 2010, pp. 448-451.
[8] X. A. Tran, B. Gao, J. F. Kang, L. Wu, Z. R. Wang, Z. Fang, K. L. Pey, Y. C. Yeo, A. Y. Du, B. Y. Nguyen, M. F. Li and H. Y. Yu, “High performance unipolar AlOy/HfOx/Ni based RRAM compatible with Si diodes for 3D application”, in VLSI Symp. Tech. Dig., 2011, p. 44-45.
[9] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices”, IEEE Trans. Elec. Dev., vol. 56, pp. 186-192, 2009.
[10] G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, W. Taylor, P. D. Kirsch, and R. Jammy, “Metal oxide RRAM switching mechanism based on conductive filament microscopic properties,” in IEDM Tech. Dig., 2010, pp. 456–459.
[11] Z. Fang, H. Y. Yu, W. J. Liu, Z. R. Wang, X. A. Tran, B. Gao, and J. F. Kang, “Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices,” IEEE Elec. Dev. Lett., vol. 31, no. 5, pp. 476-378, May 2010.
[12] X. A. Tran, B. Gao, J. F. Kang, X. Wu , L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, “Self-rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-avaialbe materials,” in IEDM, 2011, pp. 31.2.1-31.2.4.