Search results for: Earth pressure
1596 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall
Authors: Snehal R. Pathak, Sachin S. Munnoli
Abstract:
Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15171595 Finite Difference Method of the Seismic Analysis of Earth Dam
Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali
Abstract:
Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24521594 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.
Keywords: Shock velocity, detonation, shock acceleration, shock pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991593 Stress Variation of Underground Building Structure during Top-Down Construction
Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung
Abstract:
In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201592 Overtopping Protection Systems for Overflow Earth Dams
Authors: Omid Pourabdollah, Mohsen Misaghian
Abstract:
Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks.
Keywords: Embankment dam, overtopping, roller compacted concrete, wedge concrete block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8821591 Perturbative Analysis on a Lunar Free Return Trajectory
Authors: Emre Ünal, Hasan Başaran
Abstract:
In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.
Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4731590 Investigation on Pore Water Pressure in Core of Karkheh Dam
Authors: Bahar Razavi, Mansour Parehkar, Ali Gholami
Abstract:
Pore water pressure is normally because of consolidation, compaction and water level fluctuation on reservoir. Measuring, controlling and analyzing of pore water pressure have significant importance in both of construction and operation period. Since end of 2002, (dam start up) nature of KARKHEH dam has been analyzed by using the gathered information from instrumentation system of dam. In this lecture dam condition after start up have been analyzed by using the gathered data from located piezometers in core of dam. According to TERZAGHI equation and records of piezometers, consolidation lasted around five years during early years of construction stage, and current pore water pressure in core of dam is caused by water level fluctuation in reservoir. Although there is time lag between water level fluctuation and results of piezometers. These time lags have been checked and the results clearly show that one of the most important causes of it is distance between piezometer and reservoir.Keywords: Earth dam, Reservoir, Piezometer, Terzaghi, Consolidation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27671589 Valuation on MEMS Pressure Sensors and Device Applications
Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Ong Kai Sheng
Abstract:
The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure-monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications.Keywords: Pressure sensor, diaphragm, MEMS, automotive application, biomedical application, NEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56871588 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete
Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna
Abstract:
In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.Keywords: Behavior, compacting, manual, SEC, semi-automatic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091587 Preliminary Study for Separation of Heavy Rare Earth Concentrates from Egyptian Crude Monazite
Authors: Sherien H. Ahmed, Osama S. Helaly, Mohamed S. Abd El-Ghany
Abstract:
Heavy rare earth (HRE) oxalate concentrates were prepared from the Egyptian crude monazite sand (graded about 47%). The concentrates were specified quantitatively for their constituents of individual rare earth elements using ion chromatograph (IC) and qualitatively by scanning electron microscope (SEM) for the other major constituents. The 1st concentrate was composed of 10.5% HREE where 7.25% of them represented yttrium. The 2nd concentrate contained about 41.7% LREE, 17.5% HREE and 13.6% Th. The LREE involved 18.3% Ce, 10.5% La and 8% Nd while the HREE were 8.7% Y, 3.5% Gd and 2.9% Dy. The 3rd concentrate was containing about 8.0% LREE (3.7% Ce, 2.0% La and 1.5% Nd), 10.2% HREE (6.4% yttrium and 2.0% Dy) and 2.1% uranium. The final concentrate comprised 0.84% uranium beside iron, chromium and traces of REE.
Keywords: Oxalic Acid Precipitation, Rare Earth Concentrates, Thorium, Uranium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35721586 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production
Authors: A. M. Jungudo, M. A. Lasan
Abstract:
Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.
Keywords: Laterite, stone dust, compressed earth bricks, durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5461585 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil
Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty
Abstract:
Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.
Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471584 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.
Keywords: Blood pressure, blood saturation, sensors, actuators, design improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37381583 Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit
Authors: Azza M. Anis, M. M. Abutaleb, Hani F. Ragai, M. I. Eladawy
Abstract:
This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.
Keywords: CMOS LC-based oscillator, micro pressure sensor, silicon carbide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691582 Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time
Authors: Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, Gye-rok Jeon
Abstract:
In this paper, algorithm estimating the blood pressure was proposed using the pulse transit time (PTT) as a more convenient method of measuring the blood pressure. After measuring ECG and pressure pulse, and photoplethysmography, the PTT was calculated from the acquired signals. Thereafter, the system to indirectly measure the systolic pressure and the diastolic pressure was composed using the statistic method. In comparison between the blood pressure indirectly measured by proposed algorithm estimating the blood pressure and real blood pressure measured by conventional sphygmomanometer, the systolic pressure indicates the mean error of ±3.24mmHg and the standard deviation of 2.53mmHg, while the diastolic pressure indicates the satisfactory result, that is, the mean error of ±1.80mmHg and the standard deviation of 1.39mmHg. These results are satisfied with the regulation of ANSI/AAMI for certification of sphygmomanometer that real measurement error value should be within the mean error of ±5mmHg and the standard deviation of 8mmHg. These results are suggest the possibility of applying to portable and long time blood pressure monitoring system hereafter.Keywords: Blood pressure, Systolic, Diastolic, Pulse transit time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65791581 Metal Berthelot Tubes with Windows for Observing Cavitation under Static Negative Pressure
Authors: K. Hiro, Y. Imai, T. Sasayama
Abstract:
Cavitation under static negative pressure is not revealed well. The Berthelot method to generate such negative pressure can be a means to study cavitation inception. In this study, metal Berthelot tubes built in observation windows are newly developed and are checked whether high static negative pressure is generated or not. Negative pressure in the tube with a pair of a corundum plate and an aluminum gasket increased with temperature cycles. The trend was similar to that as reported before.
Keywords: Berthelot method, negative pressure, cavitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581580 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11771579 Design of Saddle Support for Horizontal Pressure Vessel
Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma
Abstract:
This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.
Keywords: ANSYS, Pressure Vessel, Saddle, Support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261461578 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube
Authors: Arash Mir Abdolah Lavasani
Abstract:
The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.
Keywords: Pressure Drag, Cam Shaped, Experimental.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23811577 Effect of L/D Ratio on the Performance of a Four-Lobe Pressure Dam Bearing
Authors: G. Bhushan, S. S. Rattan, N. P. Mehta
Abstract:
A four-lobe pressure dam bearing which is produced by cutting two pressure dams on the upper two lobes and two relief-tracks on the lower two lobes of an ordinary four-lobe bearing is found to be more stable than a conventional four-lobe bearing. In this paper a four-lobe pressure dam bearing supporting rigid and flexible rotors is analytically investigated to determine its performance when L/D ratio is varied in the range 0.75 to 1.5. The static and dynamic characteristics are studied at various L/D ratios. The results show that the stability of a four-lobe pressure dam bearing increases with decrease in L/D ratios both for rigid as well as flexible rotors.Keywords: Four-lobe pressure dam bearing, finite-elementmethod, L/D ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26431576 Earth Potential Rise (EPR) Computation for a Fault on Transmission Mains Pole
Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial
Abstract:
The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault on these structures could result to an unsafe condition. This paper discusses information on the input impedance of the over head earth wire (OHEW) system for finite and infinite transmission mains. The definition of finite and infinite system is discussed, maximum EPR due to pole fault. The simplified equations for EPR assessments are introduced and discussed for the finite and infinite conditions. A case study is also shown.Keywords: Coupling Factor, Earth Grid, EPR, Fault Current Distribution, High Voltage, Line Impedance, OHEW, Split Factor, Transmission Mains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38311575 Modeling the Vapor Pressure of Biodiesel Fuels
Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno
Abstract:
The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60121574 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube
Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda
Abstract:
In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.
Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271573 XML Integration of Data from CloudSat Satellite and GMS-6 Water Vapor Satellite
Authors: W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
This study aimed at developing visualization tools for integrating CloudSat images and Water Vapor Satellite images. KML was used for integrating data from CloudSat Satellite and GMS-6 Water Vapor Satellite. CloudSat 2D images were transformed into 3D polygons in order to achieve 3D images. Before overlaying the images on Google Earth, GMS-6 water vapor satellite images had to be rescaled into linear images. Web service was developed using webMathematica. Shoreline from GMS-6 images was compared with shoreline from LandSat images on Google Earth for evaluation. The results showed that shoreline from GMS-6 images was highly matched with the shoreline in LandSat images from Google Earth. For CloudSat images, the visualizations were compared with GMS-6 images on Google Earth. The results showed that CloudSat and GMS-6 images were highly correlated.
Keywords: CloudSat, Water vapor, Satellite images, GoogleEarth™.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521572 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield
Authors: Raed H. Allawi
Abstract:
Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.
Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851571 Dynamic Behaviour of Earth Dams for Variation of Earth Material Stiffness
Authors: Y. Parish, F. Najaei Abadi
Abstract:
This paper presents a numerical analysis of the seismic behaviour of earth dams. Analysis is conducted for the solid phase. It may correspond to the response of the dam before water filling. Analysis is conducted for a simple case which concerns the elastic response of the dam. Numerical analyses are conducted using the FLAC3D program. The behaviour of the Shell and core of the dam and the foundation behaviour is assumed to be elastic. Result shows the influence of the variation of the shear modulus of the core and shell on the seismic amplification of the dam. It can be observed that the variation of the shearing modulus of the core leads to a moderate increase in the dynamic amplification and the increase in the shell shearing modulus leads to a significant increase in the dynamic amplification.Keywords: Numerical, earth dam, seismic, dynamic, core, FLAC3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21071570 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel
Authors: Zainul Huda, Muhammad Hani Ajani
Abstract:
The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.
Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77831569 Research on Traditional Rammed Earth Houses in Southern Zhejiang, China: Based on the Theory of Embeddedness
Abstract:
Zhejiang’s special geographical environment has created characteristic mountain dwellings with climate adaptability. Among them, the terrain of southern Zhejiang is dominated by mountainous and hilly landforms, and its traditional dwellings have distinctive characteristics. They are often adapted to local conditions and laid out in accordance with the mountains. In order to block the severe winter weather conditions, local traditional building materials such as rammed earth are mostly used. However, with the development of urbanization, traditional villages have undergone large-scale changes, gradually losing their original uniqueness. In order to solve this problem, this paper takes traditional villages around Baishanzu National Park in Zhejiang as an example and selects nine typical villages in Jingning County and Longquan, respectively. Based on field investigations, this paper extracts the environmental adaptability of local traditional rammed earth houses from the perspective of “geographical embeddedness”. And then combined with case analysis, the paper discusses the translation and development of its traditional architectural methods in contemporary rammed earth buildings in southern Zhejiang.
Keywords: Rammed earth building, lighting, ventilation, geographical embeddedness, modernization translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5291568 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data
Authors: M. Yilmaz, I. Yilmaz, M. Uysal
Abstract:
The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.
Keywords: Free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9791567 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.
Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733