Search results for: zinc oxide nanorods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1896

Search results for: zinc oxide nanorods

216 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 275
215 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices

Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman

Abstract:

Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.

Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks

Procedia PDF Downloads 192
214 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 352
213 Evaluation of the Potential of Olive Pomace Compost for Using as a Soil Amendment

Authors: M. Černe, I. Palčić, D. Anđelini, D. Cvitan, N. Major, M. Lukić, S. Goreta Ban, D. Ban, T. Rijavec, A. Lapanje

Abstract:

Context: In the Mediterranean basin, large quantities of lignocellulosic by-products, such as olive pomace (OP), are generated during olive processing on an annual basis. Due to the phytotoxic nature of OP, composting is recommended for its stabilisation to produce the end-product safe for agricultural use. Research Aim: This study aims to evaluate the applicability of olive pomace compost (OPC) for use as a soil amendment by considering its physical and chemical characteristics and microbiological parameters. Methodology: The OPC samples were collected from the surface and depth layers of the compost pile after 8 months. The samples were analyzed for their C/N, pH, EC, total phenolic content, residual oils, and elemental content, as well as colloidal properties and microbial community structure. The specific analytical approaches used are detailed in the poster. Findings: The results showed that the pH of OPC ranged from 7.8 to 8.6, while the electrical conductivity was from 770 to 1608 mS/cm. The levels of nitrogen (N), phosphorus (P), and potassium (K) varied within the ranges of 1.5 to 27.2 g/kg d.w., 1.6 to 1.8 g/kg d.w., and 6.5 to 7.5 g/kg d.w., respectively. The contents of potentially toxic metals such as chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were below the EU limits for soil improvers. The microbial structure follows the changes of the gradient from the outer to the innermost layer with relatively low amounts of DNA. The gradient nature shows that it is needed to develop better strategies for composting surpassing the conventional approach. However, the low amounts of total phenols and oil residues indicated efficient biodegradation during composting. The carbon-to-nitrogen ratio (C/N) within the range of 13 to 16 suggested that OPC can be used as a soil amendment. Overall, the study suggests that composting can be a promising strategy for environmentally-friendly OP recycling. Theoretical Importance: This study contributes to the understanding of the use of OPC as a soil amendment and its potential benefits in resource recycling and reducing environmental burdens. It also highlights the need for improved composting strategies to optimize its process. Data Collection and Analysis Procedures: The OPC samples were taken from the compost pile and charasterised for selected chemical, physical and microbial parameters. The specific analytical procedures utilized are described in detail in the poster. Question Addressed: This study addresses the question of whether composting can be optimized to improve the biodegradation of OP. Conclusion: The study concludes that OPC has the potential to be used as a soil amendment due to its favorable physical and chemical characteristics, low levels of potentially toxic metals, and efficient biodegradation during composting. However, the results also suggest the need for improved composting strategies to improve the quality of OPC.

Keywords: olive pomace compost, waste valorisation, agricultural use, soil amendment

Procedia PDF Downloads 34
212 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 274
211 Hydroxy Safflower Yellow A (HSYA) Mediated Neuroprotective Effect against Ischemia Reperfusion (I/R) Injury in Cerebral Stroke

Authors: Sruthi Ramagiri, Rajeev T.

Abstract:

Free radical damage has been entailed as the major culprit in the ischemic stroke contributing for oxidative damage. Recent investigations on Hydroxy Safflower Yellow A (HSYA) suggested its role in cerebral ischemia and various neurodegenerative disorders with unidentified molecular mechanisms. The current study was designed to investigate putative therapeutic role and possible molecular mechanisms of HSYA administration during the onset of reperfusion in cerebral ischemia-reperfusion (I/R) injury in cerebral stroke. Cerebral stroke was achieved by focal ischemic model. HSYA (10 mg/kg) was injected intravenously via the tail vein 5 minutes before reperfusion. Losses of sensorimotor abilities were evaluated by neurological scoring, spontaneous locomotor activity, and rotarod performance. Extent of oxidative stress was evaluated by biochemical parameters i.e., malondialdehyde (MDA), Glutathione (GSH), Super Oxide Dismutase (SOD) and catalase levels. The infarct volume of brain was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining technique. Increased cerebral injury (I/R) was evidenced by motor impairment, increased infarct volume and elevation of MDA levels along with significant reduction in antioxidant i.e.,MDA levels along with significant reduction in antioxidant i.e., GSH, SOD and catalase levels when compared to sham control. However, post conditioning with HSYA (10 mg/kg, i.v.) at the onset of reperfusion has significantly ameliorated sensorimotor abilities, attenuated MDA levels and reduced the infarct volume as compared with vehicle treated I/R injury group. Moreover, HSYA treatments improved antioxidant enzyme levels as compared with vehicle treated I/R-injury group. In conclusion, it may be suggested that HSYA post conditioning could be novel therapeutic approach against I/R injury in cerebral stroke possibly through its anti-oxidant mechanism.

Keywords: HSYA, Ischemia reperfusion injury, oxidative stress, stroke

Procedia PDF Downloads 404
210 The Effect of Magnesium Supplement on the Athletic Performance of Field Athletes

Authors: M. Varmaziar

Abstract:

Magnesium (Mg) is an essential mineral that plays a crucial role in the human body. Certain types of foods, including nuts, grains, fruits, vegetables, and whole grains, are rich sources of magnesium. Mg serves as an essential cofactor for numerous enzymatic reactions, including energy metabolism, cellular growth, glycolysis, and protein synthesis. The Mg-ATP complex serves as an energy source and is vital for many physiological functions, including nerve conduction, muscle contraction, and blood pressure regulation. Despite the vital role of magnesium in energy metabolism, maintaining adequate magnesium intake is often overlooked among the general population and athletes. The aim of this study was to investigate the effect of magnesium supplementation on the physical activities of field athletes. Field athletes were divided into two groups: those who consumed magnesium supplements and those who received a placebo. These two groups received either 500 mg of magnesium oxide or a placebo daily for 8 weeks. At the beginning and end of the study, athletes completed ISI questionnaires and physical activity assessments. Nutritional analyses were performed using N4 software, and statistical analyses were conducted using SPSS19 software. The results of this study revealed a significant difference between the two study groups. Athletes who received magnesium supplements experienced less fatigue related to field athletic activities and muscle soreness. In contrast, athletes who received the placebo reported more significant fatigue and muscle soreness. A concerning finding in these results is that the performance of athletic activities may be at risk with low magnesium levels. Therefore, magnesium is essential for maintaining health and plays a crucial role in athletic performance. Consuming a variety of magnesium-rich foods ensures that individuals receive an adequate amount of this essential nutrient in their diet. The consumption of these foods improves performance parameters in athletic exercises.

Keywords: athletic performance, effect, field athletes, magnesium supplement

Procedia PDF Downloads 45
209 Microfabrication of Three-Dimensional SU-8 Structures Using Positive SPR Photoresist as a Sacrificial Layer for Integration of Microfluidic Components on Biosensors

Authors: Su Yin Chiam, Qing Xin Zhang, Jaehoon Chung

Abstract:

Complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) have obtained increased attention in the biosensor community because CMOS technology provides cost-effective and high-performance signal processing at a mass-production level. In order to supply biological samples and reagents effectively to the sensing elements, there are increasing demands for seamless integration of microfluidic components on the fabricated CMOS wafers by post-processing. Although the PDMS microfluidic channels replicated from separately prepared silicon mold can be typically aligned and bonded onto the CMOS wafers, it remains challenging owing the inherently limited aligning accuracy ( > ± 10 μm) between the two layers. Here we present a new post-processing method to create three-dimensional microfluidic components using two different polarities of photoresists, an epoxy-based negative SU-8 photoresist and positive SPR220-7 photoresist. The positive photoresist serves as a sacrificial layer and the negative photoresist was utilized as a structural material to generate three-dimensional structures. Because both photoresists are patterned using a standard photolithography technology, the dimensions of the structures can be effectively controlled as well as the alignment accuracy, moreover, is dramatically improved (< ± 2 μm) and appropriately can be adopted as an alternative post-processing method. To validate the proposed processing method, we applied this technique to build cell-trapping structures. The SU8 photoresist was mainly used to generate structures and the SPR photoresist was used as a sacrificial layer to generate sub-channel in the SU8, allowing fluid to pass through. The sub-channel generated by etching the sacrificial layer works as a cell-capturing site. The well-controlled dimensions enabled single-cell capturing on each site and high-accuracy alignment made cells trapped exactly on the sensing units of CMOS biosensors.

Keywords: SU-8, microfluidic, MEMS, microfabrication

Procedia PDF Downloads 490
208 Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples

Authors: Chinedu F. Anochie

Abstract:

The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established.

Keywords: comminution, degree of liberation, middlings, mine to mill

Procedia PDF Downloads 113
207 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 366
206 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 130
205 A Molecular Dynamic Simulation Study to Explore Role of Chain Length in Predicting Useful Characteristic Properties of Commodity and Engineering Polymers

Authors: Lokesh Soni, Sushanta Kumar Sethi, Gaurav Manik

Abstract:

This work attempts to use molecular simulations to create equilibrated structures of a range of commercially used polymers. Generated equilibrated structures for polyvinyl acetate (isotactic), polyvinyl alcohol (atactic), polystyrene, polyethylene, polyamide 66, poly dimethyl siloxane, poly carbonate, poly ethylene oxide, poly amide 12, natural rubber, poly urethane, and polycarbonate (bisphenol-A) and poly ethylene terephthalate are employed to estimate the correct chain length that will correctly predict the chain parameters and properties. Further, the equilibrated structures are used to predict some properties like density, solubility parameter, cohesive energy density, surface energy, and Flory-Huggins interaction parameter. The simulated densities for polyvinyl acetate, polyvinyl alcohol, polystyrene, polypropylene, and polycarbonate are 1.15 g/cm3, 1.125 g/cm3, 1.02 g/cm3, 0.84 g/cm3 and 1.223 g/cm3 respectively are found to be in good agreement with the available literature estimates. However, the critical repeating units or the degree of polymerization after which the solubility parameter showed saturation were 15, 20, 25, 10 and 20 respectively. This also indicates that such properties that dictate the miscibility of two or more polymers in their blends are strongly dependent on the chosen polymer or its characteristic properties. An attempt has been made to correlate such properties with polymer properties like Kuhn length, free volume and the energy term which plays a vital role in predicting the mentioned properties. These results help us to screen and propose a useful library which may be used by the research groups in estimating the polymer properties using the molecular simulations of chains with the predicted critical lengths. The library shall help to obviate the need for researchers to spend efforts in finding the critical chain length needed for simulating the mentioned polymer properties.

Keywords: Kuhn length, Flory Huggins interaction parameter, cohesive energy density, free volume

Procedia PDF Downloads 173
204 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 105
203 Scenario of Some Minerals and Impact of Promoter Hypermethylation of DAP-K Gene in Gastric Carcinoma Patients of Kashmir Valley

Authors: Showkat Ahmad Bhat, Iqra Reyaz, Falaque ul Afshan, Ahmad Arif Reshi, Muneeb U. Rehman, Manzoor R. Mir, Sabhiya Majid, Sonallah, Sheikh Bilal, Ishraq Hussain

Abstract:

Background: Gastric cancer is the fourth most common cancer and the second leading cause of worldwide cancer-related deaths, with a wide variation in incidence rates across different geographical areas. The current view of cancer is that a malignancy arises from a transformation of the genetic material of a normal cell, followed by successive mutations and by chain of alterations in genes such as DNA repair genes, oncogenes, Tumor suppressor genes. Minerals are necessary for the functioning of several transcriptional factors, proteins that recognize certain DNA sequences and have been found to play a role in gastric cancer. Material Methods:The present work was a case control study and its aim was to ascertain the role of minerals and promoter hypermethylation of CpG islands of DAP-K gene in Gastric cancer patients among the Kashmiri population. Serum was extracted from all the samples and mineral estimation was done by AAS from serum, DNA was also extracted and was modified using bisulphite modification kit. Methylation-specific PCR was used for the analysis of the promoter hypermethylation status of DAP-K gene. The epigenetic analysis revealed that unlike other high risk regions, Kashmiri population has a different promoter hypermethylation profile of DAP-K gene and has different mineral profile. Results: In our study mean serum copper levels were significantly different for the two genders (p<0.05), while as no significant differences were observed for iron and zinc levels. In Methylation-specific PCR the methylation status of the promoter region of DAP-K gene was as 67.50% (27/40) of the gastric cancer tissues showed methylated DAP-K promoter and 32.50% (13/40) of the cases however showed unmethylated DAP-K promoter. Almost all 85% (17/20) of the histopathologically confirmed normal tissues showed unmethylated DAP-K promoter except only in 3 cases where DAP-K promoter was found to be methylated. The association of promoter hypermethylation with gastric cancer was evaluated by χ2 (Chi square) test and was found to be significant (P=0.0006). Occurrence of DAP-K methylation was found to be unequally distributed in males and females with more frequency in males than in females but the difference was not statistically significant (P =0.7635, Odds ratio=1.368 and 95% C.I=0.4197 to 4.456). When the frequency of DAP-K promoter methylation was compared with clinical staging of the disease, DAP-K promoter methylation was found to be certainly higher in Stage III/IV (85.71%) compared to Stage I/ II (57.69%) but the difference was not statistically significant (P =0.0673). These results suggest that DAP-K aberrant promoter hypermethylation in Kashmiri population contributes to the process of carcinogenesis in Gastric cancer and is reportedly one of the commonest epigenetic changes in the development of Gastric cancer.

Keywords: gastric cancer, minerals, AAS, hypermethylation, CpG islands, DAP-K gene

Procedia PDF Downloads 492
202 Geochemistry and Petrogenesis of High-K Calc-Alkaline Granitic Rocks of Song, Hawal Massif, N. E. Nigeria

Authors: Ismaila Haruna

Abstract:

The global downfall in fossil energy prices and dwindling oil reserves in Nigeria has ignited interest in the search for alternative sources of foreign income for the country. Solid minerals, particularly Uranium and other base metals like Lead and Zinc have been considered as potentially good options. Several occurrences of this mineral have been discovered in both the sedimentary and granitic rocks of the Hawal and Adamawa Massifs as well as in the adjoining Benue Trough in northeastern Nigeria. However, the paucity of geochemical data and consequent poor petrogenetic knowledge of the granitoids in this region has made exploration works difficult. Song, a small area within the Hawal Massif, was mapped and the collected samples chemically determined in Activation Laboratory, Canada through fusion dissolution technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Field mapping results show that the area is underlain by Granites, diorites with pockets of gneisses and pegmatites and that these rocks consists of microcline, quartz, plagioclase, biotite, hornblende, pyroxene and accessory apatite, zircon, sphene, magnetite and opaques in various proportions. Geochemical data show continous compositional variation from diorite to granites within silica range of 52.69 to 76.04 wt %. Plot of the data on various Harker variation diagrams show distinct evolutionary trends from diorites to granites indicated by decreasing CaO, Fe2O3, MnO, MgO, Ti2O, and increasing K2O with increasing silica. This pattern is reflected in trace elements data which, in general, decrease from diorite to the granites with rising Rb and K. Tectonic, triangular and other diagrams, indicate high-K calc-alkaline trends, syn-collisional granite signatures, I-type characteristics, with CNK/A of less than 1.1 (minimum of 0.58 and maximum of 0.94) and strong potassic character (K2O/Na2O˃1). However, only the granites are slightly peraluminous containing high silica percentage (68.46 to 76.04), K2O (2.71 to 6.16 wt %) with low CaO (1.88 on the average). Chondrite normalised rare earth elements trends indicate strongly fractionated REEs and enriched LREEs with slightly increasing negative Eu anomaly from the diorite to the granite. On the basis of field and geochemical data, the granitoids are interpreted to be high-K calc-alkaline, I-type, formed as a result of hybridization between mantle-derived magma and continental source materials (probably older meta-sediments) in a syn-collisional tectonic setting.

Keywords: geochemistry, granite, Hawal Massif, Nigeria, petrogenesis, song

Procedia PDF Downloads 209
201 The Retinoprotective Effects and Mechanisms of Fungal Ingredient 3,4-Dihydroxybenzalacetone through Inhibition of Retinal Müller and Microglial Activation

Authors: Yu-Wen Cheng, Jau-Der Ho, Liang-Huan Wu, Fan-Li Lin, Li-Huei Chen, Hung-Ming Chang, Yueh-Hsiung Kuo, George Hsiao

Abstract:

Retina glial activation and neuroinflammation have been confirmed to cause devastating responses in retinodegenerative diseases. The expression and activation of matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) could be exerted as the crucial pathological factors in glaucoma- and blue light-induced retinal injuries. The present study aimed to investigate the retinoprotective effects and mechanisms of fungal ingredient 3,4-dihydroxybenzalacetone (DBL) isolated from Phellinus linteus in the retinal glial activation and retinodegenerative animal models. According to the cellular studies, DBL significantly and concentration-dependently abrogated MMP-9 activation and expression in TNFα-stimulated retinal Müller (rMC-1) cells. We found the inhibitory activities of DBL were strongly through the STAT- and ERK-dependent pathways. Furthermore, DBL dramatically attenuated MMP-9 activation in the stimulated Müller cells exposed to conditioned media from LPS-stimulated microglia BV-2 cells. On the other hand, DBL strongly suppressed LPS-induced production of NO and ROS and expression of iNOS in microglia BV-2 cells. Consistently, the phosphorylation of STAT was substantially blocked by DBL in LPS-stimulated microglia BV-2 cells. In the evaluation of retinoprotective functions, the high IOP-induced scotopic electroretinographic (ERG) deficit and blue light-induced abnormal pupillary light response (PLR) were assessed. The deficit scotopic ERG responses markedly recovered by DBL in a rat model of glaucoma-like ischemia/reperfusion (I/R)-injury. DBL also reduced the aqueous gelatinolytic activity and retinal MMP-9 expression in high IOP-injured conditions. Additionally, DBL could restore the abnormal PLR and reduce retinal MMP-9 activation. In summary, DBL could ameliorate retinal neuroinflammation and MMP-9 activation by predominantly inhibiting STAT3 activation in the retinal Müller cells and microglia, which exhibits therapeutic potential for glaucoma and other retinal degenerative diseases.

Keywords: glaucoma, blue light, DBL, retinal Müller cell, MMP-9, STAT, Microglia, iNOS, ERG, PLR

Procedia PDF Downloads 112
200 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes

Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez

Abstract:

Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.

Keywords: PANI, photocurrent, photoresponse, charge separation, recombination

Procedia PDF Downloads 24
199 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 184
198 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 58
197 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 149
196 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 285
195 Involvement of Nrf2 in Kolaviron-Mediated Attenuation of Behavioural Incompetence and Neurodegeneration in a Murine Model of Parkinson's Disease

Authors: Yusuf E. Mustapha, Inioluwa A Akindoyeni, Oluwatoyin G. Ezekiel, Ifeoluwa O. Awogbindin, Ebenezer O. Farombi

Abstract:

Background: Parkinson's disease (PD) is the most prevalent motor disorder. Available therapies are palliative with no effect on disease progression. Kolaviron (KV), a natural anti-inflammatory and antioxidant agent, has been reported to possess neuroprotective effects in Parkinsonian flies and rats. Objective: The present study investigates the neuroprotective effect of KV, focusing on the DJ1/Nrf2 signaling pathway. Methodology: All-trans retinoic acid (ATRA, 10 mg/kg, i.p.) was used to inhibit Nrf2. Murine model of PD was established with four doses of MPTP (20 mg/kg i.p.) at 2 hours interval. MPTP mice were pre-treated with either KV (200 mg/kg/day p.o), ATRA, or both conditions for seven days before PD induction. Motor behaviour was evaluated, and markers of oxidative stress/damage and its regulators were assessed with immunofluorescence and ELISA techniques. Results: MPTP-treated mice covered less distance with reduced numbers of anticlockwise rotations, heightened freezing, and prolonged immobility when compared to control. However, KV significantly attenuated these deficits. Pretreatment of MPTP mice with KV upregulated Nrf2 expression beyond MPTP level with a remarkable reduction in Keap1 expression and marked elevation of DJ-1 level, whereas co-administration with ATRA abrogated these effects. KV treatment restored MPTP-mediated depletion of endogenous antioxidant, striatal oxidative stress, oxidative damage, and inhibition of acetylcholinesterase activity. However, ATRA treatment potentiated acetylcholinesterase inhibition and attenuated the protective effect of KV on the level of nitric oxide and activities of catalase and superoxide dismutase. Conclusion: Kolaviron protects Parkinsonian mice by stabilizing and activating the Nrf2 signaling pathway. Thus, kolaviron can be explored as a pharmacological lead in PD management.

Keywords: Garcinia kola, Kolaviron, Parkinson Disease, Nrf2, behavioral incompetence, neurodegeneration

Procedia PDF Downloads 77
194 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)

Procedia PDF Downloads 295
193 Polymer-Layered Gold Nanoparticles: Preparation, Properties and Uses of a New Class of Materials

Authors: S. M. Chabane sari S. Zargou, A.R. Senoudi, F. Benmouna

Abstract:

Immobilization of nano particles (NPs) is the subject of numerous studies pertaining to the design of polymer nano composites, supported catalysts, bioactive colloidal crystals, inverse opals for novel optical materials, latex templated-hollow inorganic capsules, immunodiagnostic assays; “Pickering” emulsion polymerization for making latex particles and film-forming composites or Janus particles; chemo- and biosensors, tunable plasmonic nano structures, hybrid porous monoliths for separation science and technology, biocidal polymer/metal nano particle composite coatings, and so on. Particularly, in the recent years, the literature has witnessed an impressive progress of investigations on polymer coatings, grafts and particles as supports for anchoring nano particles. This is actually due to several factors: polymer chains are flexible and may contain a variety of functional groups that are able to efficiently immobilize nano particles and their precursors by dispersive or van der Waals, electrostatic, hydrogen or covalent bonds. We review methods to prepare polymer-immobilized nano particles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nano particles. The latter range from soft bio macromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nano particles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nano particles, while polymers provide excellent platforms for dispersing nano particles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.

Keywords: gold, layer, polymer, macromolecular

Procedia PDF Downloads 368
192 Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus

Authors: Anna Pick Kiong Ling, Jia May Chin, Rhun Yian Koh, Ying Pei Wong

Abstract:

Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.

Keywords: anti-inflammatory, natural products, prostaglandin E2, reactive oxygen species

Procedia PDF Downloads 257
191 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 398
190 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat

Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline

Abstract:

The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.

Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere

Procedia PDF Downloads 281
189 Modification of Titanium Surfaces with Micro/Nanospheres for Local Antibiotic Release

Authors: Burcu Doymus, Fatma N. Kok, Sakip Onder

Abstract:

Titanium and titanium-based materials are commonly used to replace or regenerate the injured or lost tissues because of accidents or illnesses. Hospital infections and strong bond formation at the implant-tissue interface are directly affecting the success of the implantation as weak bonding with the native tissue and hospital infections lead to revision surgery. The purpose of the presented study is to modify the surface of the titanium substrates with nano/microspheres for local drug delivery and to prevent hospital infections. Firstly, titanium surfaces were silanized with APTES (3-Triethoxysilylpropylamine) following the negatively charged oxide layer formation. Then characterization studies using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were done on the modified surfaces. Secondly, microspheres/nanospheres were prepared with chitosan that is a natural polymer and having valuable properties such as non-toxicity, high biocompatibility, low allergen city and biodegradability for biomedical applications. Antibiotic (ciprofloxacin) loaded micro/nanospheres have been fabricated using emulsion cross-linking method and have been immobilized onto the titanium surfaces with different immobilization techniques such as covalent bond and entrapment. Optimization studies on size and drug loading capacities of micro/nanospheres were conducted before the immobilization process. Light microscopy and SEM were used to visualize and measure the size of the produced micro/nanospheres. Loaded and released drug amounts were determined by using UV- spectrophotometer at 278 nm. Finally, SEM analysis and drug release studies on the micro/nanospheres coated Ti surfaces were done. As a conclusion, it was shown that micro/nanospheres were immobilized onto the surfaces successfully and drug release from these surfaces was in a controlled manner. Moreover, the density of the micro/nanospheres after the drug release studies was higher on the surfaces where the entrapment technique was used for immobilization. Acknowledgement: This work is financially supported by The Scientific and Technological Research Council Of Turkey (Project # 217M220)

Keywords: chitosan, controlled drug release, nanosphere, nosocomial infections, titanium

Procedia PDF Downloads 106
188 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 202
187 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 161