Search results for: spinning%20slat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 101

Search results for: spinning%20slat

71 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 77
70 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning

Authors: Juiwen Liang, Choliang Chung

Abstract:

In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.

Keywords: electrospinning, single-nozzle, hollow, nanofibers

Procedia PDF Downloads 323
69 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂

Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek

Abstract:

Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.

Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂

Procedia PDF Downloads 143
68 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor

Procedia PDF Downloads 110
67 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀

Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz

Abstract:

Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.

Keywords: metallic glass, magnesium, melt spinning, amorphous alloys

Procedia PDF Downloads 207
66 The Effect of Parameters on Production of NİO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: F. Sevim, E. Sevimli, F. Demir, T. Çalban

Abstract:

For the first time, nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters of 500 nm could be successfully obtained. The fibers were characterized by TG/DTA, FT-IR, XRD and SEM analyses.

Keywords: nano fibers, NiO/Al2O3/B2O3/SiO2 composite, sol-gel processing, electro spinning

Procedia PDF Downloads 301
65 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance

Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang

Abstract:

The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.

Keywords: bone, mice bone, NMR, water in bone

Procedia PDF Downloads 143
64 Producing TPU/Propolis Nanofibrous Membrane as Wound Dressing

Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç

Abstract:

Wound dressings have strategically and economic importance considering increase of chronic wounds in the world. In this study, TPU nanofibrous membranes containing propolis as wound dressing are produced by two different methods. Firstly, TPU solution and propolis extract were mixed and this solution was electrospun. The other method is that TPU/propolis blend was centrifugally spun. Properties of nanofibrous membranes obtained by these methods were compared. While realizing the experiments, both systems were optimized to produce nanofibers with nearly same average fiber diameter.

Keywords: nanofiber, wound dressing, electrospinning, centrifugal spinning

Procedia PDF Downloads 418
63 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques

Procedia PDF Downloads 220
62 Microfiber Release During Laundry Under Different Rinsing Parameters

Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan

Abstract:

Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.

Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine

Procedia PDF Downloads 63
61 Flexural Properties of Carbon/Polypropylene Composites: Influence of Matrix Forming Polypropylene in Fiber, Powder, and Film States

Authors: Vijay Goud, Ramasamy Alagirusamy, Apurba Das, Dinesh Kalyanasundaram

Abstract:

Thermoplastic composites render new opportunities as effective processing technology while crafting newer complications into processing. One of the notable challenges is in achieving thorough wettability that is significantly deterred by the high viscosity of the long molecular chains of the thermoplastics. As a result of high viscosity, it is very difficult to impregnate the resin into a tightly interlaced textile structure to fill the voids present in the structure. One potential solution to the above problem, is to pre-deposit resin on the fiber, prior to consolidation. The current study compares DREF spinning, powder coating and film stacking methods of predeposition of resin onto fibers. An investigation into the flexural properties of unidirectional composites (UDC) produced from blending of carbon fiber and polypropylene (PP) matrix in varying forms of fiber, powder and film are reported. Dr. Ernst Fehrer (DREF) yarns or friction spun hybrid yarns were manufactured from PP fibers and carbon tows. The DREF yarns were consolidated to yield unidirectional composites (UDCs) referred to as UDC-D. PP in the form of powder was coated on carbon tows by electrostatic spray coating. The powder-coated towpregs were consolidated to form UDC-P. For the sake of comparison, a third UDC referred as UDC-F was manufactured by the consolidation of PP films stacked between carbon tows. The experiments were designed to yield a matching fiber volume fraction of about 50 % in all the three UDCs. A comparison of mechanical properties of the three composites was studied to understand the efficiency of matrix wetting and impregnation. Approximately 19% and 68% higher flexural strength were obtained for UDC-P than UDC-D and UDC-F respectively. Similarly, 25% and 81% higher modulus were observed in UDC-P than UDC-D and UDC-F respectively. Results from micro-computed tomography, scanning electron microscopy, and short beam tests indicate better impregnation of PP matrix in UDC-P obtained through electrostatic spray coating process and thereby higher flexural strength and modulus.

Keywords: DREF spinning, film stacking, flexural strength, powder coating, thermoplastic composite

Procedia PDF Downloads 203
60 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 257
59 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 366
58 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 56
57 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber

Procedia PDF Downloads 313
56 A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space

Authors: Mohsen Farshad

Abstract:

Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles.

Keywords: entropy, information, force, Brownian Motions

Procedia PDF Downloads 42
55 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications

Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz

Abstract:

GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.

Keywords: biomaterial, GFP, nano-fibers, protein expression

Procedia PDF Downloads 283
54 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: new test rig, rolling contact fatigue, rail, small scale

Procedia PDF Downloads 444
53 Preparation of Melt Electrospun Polylactic Acid Nanofibers with Optimum Conditions

Authors: Amir Doustgani

Abstract:

Melt electrospinning is a safe and simple technique for the production of micro and nanofibers which can be an alternative to conventional solvent electrospinning. The effects of various melt-electrospinning parameters, including molecular weight, electric field strength, flow rate and temperature on the morphology and fiber diameter of polylactic acid were studied. It was shown that molecular weight was the predominant factor in determining the obtainable fiber diameter of the collected fibers. An orthogonal design was used to examine process parameters. Results showed that molecular weight is the most effective parameter on the average fiber diameter of melt electrospun PLA nanofibers and the flow rate has the less important impact. Mean fiber diameter increased by increasing MW and flow rate, but decreased by increasing electric field strength and temperature. MFD of optimized fibers was below 100 nm and the result of software was in good agreement with the experimental condition.

Keywords: fiber formation, processing, spinning, melt blowing

Procedia PDF Downloads 411
52 Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown.

Keywords: dispersion, sonication, carbon nanoparticles, filaments

Procedia PDF Downloads 269
51 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice

Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi

Abstract:

The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.

Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature

Procedia PDF Downloads 300
50 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.

Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping

Procedia PDF Downloads 322
49 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 363
48 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 338
47 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery

Authors: Payal Patel

Abstract:

Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.

Keywords: flyer, size optimization, textile, weight

Procedia PDF Downloads 187
46 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 293
45 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites

Procedia PDF Downloads 353
44 Development of a Nanocompound Based Fibre to Combat Insects

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.

Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite

Procedia PDF Downloads 224
43 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 274
42 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: boundary layer profile, fire whirls, near-ground height, vortex interactions

Procedia PDF Downloads 132