Search results for: salt concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5346

Search results for: salt concentration

5076 Pre-Soaking Application of Salicylic Acid on Four Wheat Cultivars under Saline Concentrations

Authors: Saad M. Howladar, Mike Dennett

Abstract:

The effect of salinity (0-200 mMNaCl) on wheat growth (leaf and tiller numbers, and fresh and dry weights) underseed soaking (6 and 24 hs) insalicylic acid (SA) was investigated. The impact of salinity was less pronounced in salt tolerant cultivars (Sakha 93 and S24) than Paragon and S24. Chlorophyll content was increased as a response to salinity stress. It was raised in 100 mMNaCl more than 200 mMNaCl. The same trend was found in 24 hs soaking, except chlorophyll content in Paragon and S24 under 200 mMNaCl was more than 100 mMNaCl. SA application induced a positive effect on growth parameters in some cultivars, particularly Paragon under saline and non-saline condition. Soaking for 6 hs was more effective than 24 hs soaking, especially in Paragon and Sakha 93. SA supply caused a slight effect on chlorophyll content but this was not significant and there was no significant difference between both soaking hs. The effect of SA on growth parameters and chlorophyll content depends on cultivar genotype and SA concentration.

Keywords: salinity, salicylic acid, growth parameters, chlorophyll content, wheat cultivars

Procedia PDF Downloads 516
5075 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform

Authors: Ali A. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 455
5074 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure

Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad

Abstract:

One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.

Keywords: classrooms, concentration, humidity, particulate matters, regression

Procedia PDF Downloads 306
5073 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium

Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool

Abstract:

Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.

Keywords: wastewater, staphylococcus, chromium, bioremediation

Procedia PDF Downloads 138
5072 Determination of Heavy Metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni and Zn) in 6 Important Commercial Fish Species in North of Hormoz Strait

Authors: Majid Afkhami, Maryam Ehsanpour, Zahra Khoshnood

Abstract:

The concentrations of 10 heavy metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni, Zn) were measured in muscle, gill and liver of 6 species from Hormoz Strait in north coast of Persian Gulf in 12 months (April 2009 – March 2010). All samples were analyzed three times for Cd, Pb, Cu, Fe, Mn, Al, As, Ni, Zn by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and for Hg by LECO AMA254 Advanced Mercury Analyzer. Results of this study showed that iron had the highest concentration (total mean concentration) in all species, followed by Zn, Cu, Ni, Al, Pb, Mn, Cd, Hg and lowest concentration in three tissues was As. In addition, the accumulation of metals was species-dependent, and was higher in Scomberomorous commerson and Scomberomorous guttatus (p<0.05) and the lowest concentration was record in Pampus argenteus (p<0.05).

Keywords: Persian Gulf, heavy metals, Hormoz strait, Scomberomorous guttatus, Scomberomorous commerson, Pampus argenteus

Procedia PDF Downloads 615
5071 Efficacy of Sea Water with Reduced Rate Herbicide to Control Weeds in Tropical Turf

Authors: Md. Kamal Uddin, Abdul Shukor Juraimi, Md. Parvez Anwar

Abstract:

Seawater with reduced herbicide could be considered as a low cost environment friendly alternative method for weed control in turfgrass. Different concentration of sea water in combination with trifloxysulfuron-sodium and quinclorac were used to determine weed control level in turfgrass field. The weed species S. diander, C. aromaticus, and C. rotundus except E. atrovirens were fully controlled when treated with ¾ recommended trifloxysulfuron–sodium with sea water, ¾ recommended trifloxysulfuron–sodium with ¾ sea water, ½ recommended trifloxysulfuron–sodium with sea water, ¾ recommended quinclorac with sea water and ¾ recommended quinclorac with ¾ sea water. Eragrostis atrovirens showed maximum 48% injury when treated with ¾ recommended trifloxysulfuron–sodium and sea water. Among the tested turf grasses, P. vaginatum showed only 8% injury to sea water in combination with ¾ recommended quinclorac, indicating greater salt tolerance. Zoysia japonica also showed no more than 14% injury when treated with sea water in combination with ¾ recommended trifloxysulfuron–sodium or quinclorac.

Keywords: sea water, trifloxysulfuron–sodium, quinclorac, turf

Procedia PDF Downloads 346
5070 Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins

Authors: Adil A. Mohammed, Seif-Eddeen K. Fateen, Tamer S. Ahmed, Tarek M. Moustafa

Abstract:

Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value.

Keywords: falling film, oligomerization, comsol mutiphysics, linear alpha olefins

Procedia PDF Downloads 439
5069 Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast

Authors: Asma Ahmed Aljohani, Mohammed Orif

Abstract:

The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources.

Keywords: bivalves, biomonitoring, hydrocarbons, PAHs

Procedia PDF Downloads 59
5068 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 290
5067 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis

Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi

Abstract:

New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods. A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.

Keywords: isoniazid, MODS assay, MDR-TB, rifampin

Procedia PDF Downloads 284
5066 Modification of Fick’s First Law by Introducing the Time Delay

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.

Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law

Procedia PDF Downloads 371
5065 Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process

Authors: Siti Nurkhamidah, Yeni Rahmawati, Fadlilatul Taufany, Eamor M. Woo, I Made P. A. Merta, Deffry D. A. Putra, Pitsyah Alifiyanti, Krisna D. Priambodo

Abstract:

Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed.

Keywords: carbon nanotube, cellulose acetate, desalination, membrane, PEG

Procedia PDF Downloads 293
5064 Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor

Authors: Jeonghun Nam, Seonggil Kim, Hyunjoo Choi, Chae Seung Lim

Abstract:

Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold.

Keywords: cell concentration, high-throughput, non-powered, viscoelastic fluid

Procedia PDF Downloads 253
5063 The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens

Authors: Ewa Brychcy, Natalia Ulbin-Figlewicz, Dominika Kulig, Żaneta Król, Andrzej Jarmoluk

Abstract:

Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat.

Keywords: acidic electrolyzed water, foodborne pathogens, meat decontamination, membrane electrolysis

Procedia PDF Downloads 463
5062 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 52
5061 Study of Corrosion in Structures due to Chloride Infiltration

Authors: Sukrit Ghorai, Akku Aby Mathews

Abstract:

Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards.

Keywords: chloride infiltration, concrete, corrosion, design charts

Procedia PDF Downloads 376
5060 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil

Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar

Abstract:

A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.

Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants

Procedia PDF Downloads 394
5059 Time Integrated Measurements of Radon and Thoron Progeny Concentration in Various Dwellings of Bathinda District of Punjab Using Deposition Based Progeny Sensors

Authors: Kirandeep Kaur, Rohit Mehra, Pargin Bangotra

Abstract:

Radon and thoron are pervasive radioactive gases and so are their progenies. The progenies of radon and thoron are present in the indoor atmosphere as attached/unattached fractions. In the present work, seasonal variation of concentration of attached and total (attached + unattached) nanosized decay products of indoor radon and thoron has been studied in the dwellings of Bathinda District of Punjab using Deposition based progeny sensors over long integrated times, which are independent of air turbulence. The preliminary results of these measurements are reported particularly regarding DTPS (Direct Thoron Progeny Sensor) and DRPS (Direct Radon Progeny Sensor) for the first time in Bathinda. It has been observed that there is a strong linear relationship in total EERC (Equilibrium Equivalent Radon Concentration) and EETC (Equilibrium Equivalent Thoron Concentration) in rainy season (R2 = 0.83). Further a strong linear relation between total indoor radon concentration and attached fraction has also been observed for the same rainy season (R2= 0.91). The concentration of attached progeny of radon (EERCatt) is 76.3 % of the total Equilibrium Equivalent Radon Concentration (EERC).

Keywords: radon, thoron, progeny, DTPS/DRPS, EERC, EETC, seasonal variation

Procedia PDF Downloads 384
5058 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation

Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath

Abstract:

Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.

Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD

Procedia PDF Downloads 493
5057 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel

Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim

Abstract:

Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.

Keywords: candida cells, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 165
5056 Influence of Coenzyme as a Corrosion Barrier for Biodegradable Magnesium

Authors: Minjung Park, Jimin Park, Youngwoon Kim, Hyungseop Han, Myoungryul Ok, Hojeong Jeon, Hyunkwang Seok, Yuchan Kim

Abstract:

Magnesium is an essential element in human body and has unique characteristics such as bioabsorbable and biodegradable properties. Therefore, there has been much attention on studies on the implants based on magnesium to avoid subsequent surgery. However, high amount of hydrogen gas is generated by relatively severe corrosion of magnesium especially in aqueous condition with chloride ions. And it contributes to the causes of swelling of skin and causes consequent inflammation of soft tissue where is directly in contact with implants. Therefore, there is still concern about the safety of the using biodegradable magnesium alloys, which is limited to various applications. In this study, we analyzed the influence of coenzyme on corrosion behavior of magnesium. The analysis of corrosion rate was held by using Hanks’ balanced salt solution (HBSS) as a body stimulated fluid and in condition of 37°C. Thus, with deferring the concentration of the coenzyme used in this study, corrosion rates from 0.0654ml/ cm² to 0.0438ml/cm² were observed in immersion tests. Also, comparable results were obtained in electrochemical tests. Results showed that hydrogen gas produced from corrosion of magnesium can be controlled.

Keywords: biodegradable magnesium, biomaterials, coenzyme, corrosion

Procedia PDF Downloads 385
5055 Technologies for Solar Energy Storage and Utilization Using Mixture of Molten Salts and Polymers

Authors: Anteneh Mesfin Yeneneh, Abdul Shakoor, Jimoh Adewole, Safinaz Al Balushi, Sara Al Balushi

Abstract:

The research work focuses on exploring better technologies for solar energy storage. The research has the objective of substituting fossil fuels with renewable solar energy technology. This was the reason that motivated the research team to search for alternatives to develop an eco-friendly desalination process, which fully depends on the solar energy source. The Authors also investigated the potential of using different salt mixtures for better solar energy storage and better pure water productivity. Experiments were conducted to understand the impacts of solar energy collection and storage techniques on heat accumulation, heat storage capacity of various compositions of salt mixtures. Based on the experiments conducted, the economic and technical advantages of the integrated water desalination was assessed. Experiments also showed that the best salts with a higher storage efficiency of heat energy are NaCl, KNO3, and MgCl26H2O and polymers such as Poly Propylene and Poly Ethylene Terephthalate.

Keywords: molten salts, desalination, solar energy storage and utilization, polymers

Procedia PDF Downloads 110
5054 Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant

Authors: Maryam Sadeghi, Claude Bazin, Daniel Hodouin, Laura Perez Barnuevo

Abstract:

The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit.

Keywords: data reconciliation, iron ore concentration, mineral composition, process performance assessment

Procedia PDF Downloads 174
5053 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 73
5052 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 371
5051 Effects Induced by Dispersion-Promoting Cylinder on Fiber-Concentration Distributions in Pulp Suspension Flows

Authors: M. Sumida, T. Fujimoto

Abstract:

Fiber-concentration distributions in pulp liquid flows behind dispersion promoters were experimentally investigated to explore the feasibility of improving operational performance of hydraulic headboxes in papermaking machines. The proposed research was performed in the form of a basic test conducted on a screen-type model comprising a circular cylinder inserted within a channel. Tests were performed using pulp liquid possessing fiber concentrations ranging from 0.3-1.0 wt% under different flow velocities of 0.016-0.74 m/s. Fiber-concentration distributions were measured using the transmitted light attenuation method. Obtained test results were analyzed, and the influence of the flow velocities on wake characteristics behind the cylinder has been investigated with reference to findings of our preceding studies concerning pulp liquid flows in straight channels. Changes in fiber-concentration distribution along the flow direction were observed to be substantially large in the section from the cylinder to four times its diameter downstream of its centerline. Findings of this study provide useful information concerning the development of hydraulic headboxes.

Keywords: dispersion promoter, fiber-concentration distribution, hydraulic headbox, pulp liquid flow

Procedia PDF Downloads 307
5050 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 295
5049 Antibacterial Potentials of the Leaf Extracts of Siam Weed (Chromolaena odorata) on Wound Isolates

Authors: M. E. Abalaka, O. A. Falusi, M. Galadima, D. Damisa

Abstract:

The antimicrobial activity of aqueous, ethanolic and methanolic extracts of Chromolaena odorata (Siam weed) was evaluated against four wound isolates: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae at the concentrations of 200mg/ml, 100mg/ml, 50mg/ml and 25mg/ml respectively. S. aureus and E. coli showed high susceptibility to the various extracts than the other test isolates. The aqueous extract showed activity against Staphylococcus aureus with a mean diameter of zone of inhibition of 16 ± 3.00 at concentration of 200mg/ml and as low as 8 ± 0.00 at concentration of 25mg/ml; E. coli showed susceptibility with a mean diameter of zone of inhibition of 18 ± 2.00 and 10 ± 0.00 at a concentration of 200mg/ml and 25mg/ml respectively. Pseudomonas aeruginosa and Klebsiella pneumoniae were resistant to the aqueous extract. Methanol extract showed activity against Staphylococcus aureus with a mean diameter of zone of inhibition at 28 ± 4.00 and 12 ± 2.30 at a concentration of 200mg/ml and 25mg/ml respectively; while E. coli was susceptible with mean diameter of zone of inhibition of 18 ± 2.00 and as low as 12 ± 0.00 at a concentration of 200mg/ml and 50mg/ml respectively, Pseudomonas aeruginosa showed considerable susceptibility with mean diameter of zone of inhibition of 13 ± 1.00 and 12 ± 0.00 at a concentration of 200mg/ml and 100mg/ml respectively. The ethanol extract showed activity against S. aureus with a mean diameter zone of inhibition of 15 ± 2.00 and 9 ± 0.00 at a concentration of 200mg/ml and 25mg/ml respectively: E. coli showed susceptibility with a mean diameter zone of inhibition of 20 ± 4.00 and 13 ± 2.00 at a concentration of 200mg/ml and 25mg/ml respectively. Pseudomonas aeruginosa showed considerable susceptibility with a mean diameter zone of inhibition of 13 ± 1.00 and 9 ± 0.00 at a concentration of 200mg/ml and 100mg/ml respectively. The results above indicate the efficacy and potency of the crude extracts of Chromolaena odorata leaf on the tested wound isolates.

Keywords: antibacterial, Chromolaena odorata, leaf extracts, test isolates

Procedia PDF Downloads 325
5048 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System

Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta

Abstract:

Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.

Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp

Procedia PDF Downloads 165
5047 The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta

Authors: T. Nouri, Y. H. A. Reguieg, A. Latigui, A. Ouaini

Abstract:

Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite.

Keywords: salinity, bentonite, Vicia faba L, sodium content, hydrous parameters

Procedia PDF Downloads 332