Search results for: radiofrequency spectrophotometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 162

Search results for: radiofrequency spectrophotometry

102 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 122
101 Starch-Based Systems for the Nano-Delivery of Quercetin

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.

Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications

Procedia PDF Downloads 105
100 Evaluation of Pollution in Underground Water from ODO-NLA and OGIJO Metropolis Industrial Areas in Ikorodu

Authors: Zaccheaus Olasupo Apotiola

Abstract:

This study evaluates the level of pollution in underground water from Ogijo and Odo-nla areas in lkorodu, Lagos State. Water sample were collected around various industries and transported in ice packs to the laboratory. Temperature and pH was determined on site, physicochemical parameters and total plate were determined using standard methods, while heavy metal concentration was determined using Atomic Absorption spectrophotometry method. The temperature was observed at a range of 20-28 oC, the pH was observed at a range of 5.64 to 6.91 mol/l and were significantly different (P < 0.05) from one another. The chloride content was observed at a range 70.92 to 163.10 mg/l there was no significant difference (P > 0.05) between sample 40 GAJ and ISUP, but there was significant difference (P < 0.05) between other samples. The acidity value varied from 11.0 – 34.5 (mg/l), the samples had no alkalinity. The Total plate count was found at 20-125 cfu/ml. Asernic, Lead, Cadmium, and Mercury concentration ranged between 0.03 - 0.09, 0.04 - 0.11, 0.00 -0.00, and 0.00 – 0.00(mg/l) respectively. However there was significant difference (p < 0.05) between all samples except for sample 4OGA, 5OGAJ, and 3SUTN that were not significantly different (P > 0.05). The results revealed all samples are not safe for human consumption as the levels of Asernic and Lead are above the maximum value of (0.01 mg/l) recommended by NIS 554 and WHO.

Keywords: arsenic, cadmium, lead mercury, WHO

Procedia PDF Downloads 489
99 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract

Authors: Ploysai Ohama, Nattida Tumpat

Abstract:

Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.

Keywords: natural dyes, plant materials, dyeing, mordant

Procedia PDF Downloads 266
98 Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process: A Green Approach for Mass Production

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: average life time, CdSe QDs, microwave (MW), mass production oleic acid, Na2SeSO3

Procedia PDF Downloads 279
97 Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates

Authors: Ali Bahri Lubis

Abstract:

The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic.

Keywords: tryptophan oxidation, heme-dioxygenases, N-formylkynurenine, hydroxypyrrroloindoleamine, monooxidation

Procedia PDF Downloads 53
96 Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City

Authors: Farhana Tarannum

Abstract:

Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants.

Keywords: gaseous pollutants, UV-visible spectrophotometry, ambient air quality, Dhaka city

Procedia PDF Downloads 324
95 Rapid Microwave-Enhanced Process for Synthesis of CdSe Quantum Dots for Large Scale Production and Manipulation of Optical Properties

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: CdSe QDs, Na2SeSO3, microwave (MW), oleic acid, mass production, average life time

Procedia PDF Downloads 678
94 Investigation of the Morphology and Optical Properties of CuAlO₂ Thin Film

Authors: T. M. Aminu, A. Salisu, B. Abdu, H. U. Alhassan, T. H. Dharma

Abstract:

Thin films of CuAlO2 were deposited on clean glass substrate using the chemical solution deposition (sol-gel) method of deposition with CuCl and AlCl3 taken as the starting materials. CuCl was dissolved in HCl while AlCl₃ in distilled water, pH value of the mixture was controlled by addition of NaOH. The samples were annealed at different temperatures in order to determine the effect of annealing temperatures on the morphological and optical properties of the deposited CuAlO₂ thin film. The surface morphology reveals an improved crystalline as annealing temperature increases. The results of the UV-vis and FT-IR spectrophotometry indicate that the absorbance for all the samples decreases sharply from a common value of about 89% at about 329 nm to a range of values of 56.2%-35.2% and the absorption / extinction coefficients of the films decrease with increase in annealing temperature from 1.58 x 10⁻⁶ to1.08 x 10⁻⁶ at about 1.14eV in the infrared region to about 1.93 x 10⁻⁶ to 1.29 x 10⁻⁶ at about 3.62eV in the visible region, the transmittance, reflectance and band gaps vary directly with annealing temperature, the deposited films were found to be suitable in optoelectronic applications.

Keywords: copper aluminium-oxide (CuAlO2), absorbance, transmittance, reflectance, band gaps

Procedia PDF Downloads 265
93 Heavy Metal Distribution in Tissues of Two Commercially Important Fish Species, Euryglossa orientalis and Psettodes erumei

Authors: Reza Khoshnood, Zahra Khoshnood, Ali Hajinajaf, Farzad Fahim, Behdokht Hajinajaf, Farhad Fahim

Abstract:

In 2013, 24 fish samples were taken from two fishery regions in Bandar-Abbas and Bandar-Lengeh, the fishing grounds north of Hormoz Strait (Persian Gulf) near the Iranian coastline. The two flat fishes were oriental sole (Euryglossa orientalis) and deep flounder (Psettodes erumei). Using the ROPME method (MOOPAM) for chemical digestion, Cd concentration was measured with a nonflame atomic absorption spectrophotometry technique. The average concentration of Cd in the edible muscle tissue of deep flounder was measured in Bandar-Abbas and was found to be 0.15±.06 µg g-1. It was 0.1±.05 µg.g-1 in Bandar-Lengeh. The corresponding values for oriental sole were 0.2±0.13 and 0.13±0.11 µg.g-1. The average concentration of Cd in the liver tissue of deep flounder in Bandar-Abbas was 0.22±.05 µg g-1 and that in Bandar-Lengeh was 0.2±0.04 µg.g-1. The values for oriental sole were 0.31±0.09 and 0.24±0.13 µg g-1 in Bandar-Abbas and Bandar-Lengeh, respectively.

Keywords: trace metal, Euryglossa orientalis, Psettodes erumei, Persian Gulf

Procedia PDF Downloads 636
92 Development of Starch Nanoparticles as Vehicles for Curcumin Delivery

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Starch is a highly biocompatible, non-toxic, and biodegradable polymer. It is widely used in biomedical applications, including drug delivery systems and tissue engineering scaffolds. Curcumin, a phenolic compound found in the dried root of Curcuma longa, has been used as a nutritional supplement due to its antimicrobial, anti-inflammatory, and antioxidant effects. However, the major problem with ingesting curcumin by itself is its poor bioavailability due to its poor absorption and rapid metabolism. In this study, we report a novel methodology to prepare starch nanoparticles loaded with curcumin. The nanoparticles were synthesized via nanoprecipitation of starch granules extracted from native Andean potatoes (Solanum tuberosum ssp. and Andigena var Huamantanga varieties). The nanoparticles were crosslinked and stabilized by using sodium tripolyphosphate and Tween®80, respectively. The characterization of the nanoparticles loaded with curcumin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that native starch nanoparticles could be used to prepare promising nanocarriers for the controlled release of curcumin.

Keywords: starch nanoparticle, nanoprecipitation, curcumin, biomedical applications

Procedia PDF Downloads 97
91 Spectrophotometric Determination of L-Dopa in Germinated and Non-Germinated Broad Beans (Vicia faba L.) and Chickpea (Cicer aritinum L.)

Authors: Wissame Gouigah, Amina Medellel, Mahmoud Trachi, Djedjiga Benamara, Salem Benamara

Abstract:

The purpose of this work is to investigate, by UV/VIS spectrophotometry, the distribution of L-dopa, known as precursor of dopamine which is used in the treatment of Parkinson's disease, in broad beans (Vicia faba) (Vf) and chickpea (Cicer aritinum L.) (CA). In the case of Vf, the different organs were analyzed separately: 1) First, in the fresh state: pod (GF), cotyledons (CF), green shell (EF) and placenta (PF) which is the organ through which the seed is attached to the pod, 2) in the dry state (S): peel of the dry seed (ES) and cotyledons (CS), and 3) in the germinated state: peel (EGe), cotyledons (CGe) and germ (GeVf). Results showed that the content of L-dopa is unevenly distributed between different parts of fresh Vf. But the most important result concerns the predominance of L-dopa in placenta with an L-dopa content (~ 60 mg/g of wet weight, ww) sometimes 7-fold higher (p≤0.05) than those of other considered parts of fresh Vf. In the case of CA, the L-dopa concentration in germinated gains was higher than those found in all analyzed Vf organs, excepted PF.

Keywords: broad bean (Vicia faba L.), chickpea (Cicer aritinum L.), L-dopa, Parkinson disease, placenta

Procedia PDF Downloads 316
90 The Effects of pH on the Electrochromism in Nickel Oxide Films

Authors: T. Taşköprü, M. Zor, E. Turan

Abstract:

The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.

Keywords: nickel oxide, XRD, SEM, cyclic voltammetry

Procedia PDF Downloads 273
89 The Effects of External Daminozide (ALAR) Application on Nutrient Contents in Memecik Olive Trees

Authors: Sahriye Sonmez, Salih Ulger, Mustafa Kaplan, Mustafa Karhan

Abstract:

The objective of this study was to investigate the effects of external ALAR application on nutrients contents in leaf and node in ‘on (bearing)’ and ‘off (non-bearing)’ years in Memecik olive trees. For this purpose; 2000 mg L-1 ALAR was externally applied to Memecik olive trees, and leaf and node samples from olive trees were taken during the induction, initiation and differentiation periods in ‘on’ and ‘off’ years. Nutrients contents (N, P, K, Ca, Mg, Fe, Mn, Zn and Cu) in leaf and node samples were determined. The K, Ca, Mg, Fe, Mn, Zn and Cu contents were determined by atomic absorption spectrophotometry, Nitrogen by Kjeldahl procedure, and P by a spectrophotometric method. The results showed that the N, Ca, Mg, Fe, Mn, Zn and Cu contents in ‘on’ year were higher than ‘off’ year while the K contents in ‘on’ year were lower than ‘off ‘ year, but the P content was not different. The N, Ca, Mg, Fe and Mn contents in leaf samples were higher in the node samples except for K while the P, Zn and Cu contents were not different. The N, K, Ca, Fe, Mn, Zn and Cu contents were lowest during the initiation period while the P content was highest in this period. The Mg content was not different in all period.

Keywords: bearing, differentiation period, induction period, initiation period, non bearing, olive

Procedia PDF Downloads 425
88 Luffa cylindrica as Alternative for Treatment of Waste in the Classroom

Authors: Obradith Caicedo, Paola Devia

Abstract:

Methylene blue (MB) and malachite green (MG) are substances commonly used in classrooms for academic purposes. Nevertheless, in most cases, there is no adequate disposal of this type of waste, their presence in the environment affects ecosystems due to the presence of color and the reduction of photosynthetic processes. In this work, we evaluated properties of fibers of Luffa cylindrica in removal from dyes of aqueous solutions through an adsorption process. The point of zero charge, acid and basic sites was also investigated. The best conditions of the adsorption process were determined under a discontinuous system, evaluating an interval of the variables 2 3 : pH value, particle size of the adsorbent and contact time. The temperature (18ºC), agitation (220 rpm) and adsorbent dosage (10g/L) were constant. Measurements were made using UV- Visible spectrophotometry. The point of zero charge for Luffa cylindrica was 4,3. The number of acidic and basic sites was 2.441 meq/g and 1,009 meq/g respectively. These indicate a prevalence of acid groups. The maximum dye sorption was found to be at a pH of 5,5 (97,1 % for MB) and 5,0 (97,7% for MG) and particle size of the adsorbent 850 µm. The equilibrium uptake was attained within 60 min. With this study, it has been shown that Luffa cylindrica can be used as efficient adsorbent for the removal of methylene blue, and malachite green from aqueous solution in classrooms.

Keywords: adsorption, dye removal, low-cost adsorbents, Luffa cylindrical

Procedia PDF Downloads 165
87 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering

Authors: Radka Králová, Libor Kvítek, Václav Ranc, Aleš Panáček, Radek Zbořil

Abstract:

Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.

Keywords: metals, nanostructures, chemical reduction, Raman spectroscopy, optical properties

Procedia PDF Downloads 349
86 Solvent Extraction, Spectrophotometric Determination of Antimony(III) from Real Samples and Synthetic Mixtures Using O-Methylphenyl Thiourea as a Sensitive Reagent

Authors: Shashikant R. Kuchekar, Shivaji D. Pulate, Vishwas B. Gaikwad

Abstract:

A simple and selective method is developed for solvent extraction spectrophotometric determination of antimony(III) using O-Methylphenyl Thiourea (OMPT) as a sensitive chromogenic chelating agent. The basis of proposed method is formation of antimony(III)-OMPT complex was extracted with 0.0025 M OMPT in chloroform from aqueous solution of antimony(III) in 1.0 M perchloric acid. The absorbance of this complex was measured at 297 nm against reagent blank. Beer’s law was obeyed up to 15µg mL-1 of antimony(III). The Molar absorptivity and Sandell’s sensitivity of the antimony(III)-OMPT complex in chloroform are 16.6730 × 103 L mol-1 cm-1 and 0.00730282 µg cm-2 respectively. The stoichiometry of antimony(III)-OMPT complex was established from slope ratio method, mole ratio method and Job’s continuous variation method was 1:2. The complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance selectivity of the method. The proposed method is successfully applied for determination of antimony(III) from real samples alloy and synthetic mixtures. Repetition of the method was checked by finding relative standard deviation (RSD) for 10 determinations which was 0.42%.

Keywords: solvent extraction, antimony, spectrophotometry, real sample analysis

Procedia PDF Downloads 310
85 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study

Authors: M. A. Lawal, A. Uzairu, M. S. Sallau

Abstract:

The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.

Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard

Procedia PDF Downloads 342
84 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties

Authors: Rebecca Thombre, Aishwarya Borate

Abstract:

Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.

Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer

Procedia PDF Downloads 899
83 Assessment of Cassava Varieties in Ecuador for the Production of Lactic Acid From Starch by-Products

Authors: Pedro Maldonado-Alvarado

Abstract:

An important cassava quality production was detected in Ecuador. However, in this country, few products with low adding-value are produced from the tuber and none from cassava by-products. To our best knowledge, lactic acid was produced from Ecuadorian cassava bagasse starch in a biotechnological way. The objective of this contribution was to study the influence of the fermentation variables (pH and agitation) on the lactic acid production of Ecuadorian cassava varieties from bagasse starch. Enzymatic hydrolysis of cassava bagasse starch for INIAP 650 and INIAP 651 varieties spread in Ecuador was performed using α-amylase and amyloglucosidase. Then, glucose was fermented by Lactobacillus leichmannii strains in different conditions of agitation (0 and 150 rpm) and pH (4.5, 5.0, and 5.5). Significant differences in ash, fibre, protein, lipids, and amylose were found in cassava bagasse starch of INIAP 650 and INIAP 651 with 1.4 and 1.3%, 4.3 and 6%, 1.2 and 2.1%, 1.9 and 1.5%, and 24.3 and 26.5%, respectively. The determination of lactic acid was performed by potentiometric and FTIR analysis. Conversions of cassava bagasse to reduced sugars were 71.7 and 85.1% for INIAP 650 and INIAP 651, respectively. The best lactic acid concentrations were 27.6 and 33.5 g/L, obtained at agitation 150 rpm and pH 5.5 for INIAP 650 and INIAP 651. Qualitative analysis conducted by FTIR spectrophotometry confirmed the presence of lactic acid in the reacted products. This investigation could contribute to the valorisation of residues from promising cassava varieties in Ecuador and hence to increase the development of this country.

Keywords: bagasse starch, cassava, Ecuador, fermentation, lactic acid

Procedia PDF Downloads 162
82 First Occurrence of Histopathological Assessment in Gadoid Deep-Fish Phycis blennoides from the Southwestern Mediterranean Sea

Authors: Zakia Alioua, Amira Soumia, Zerouali-Khodja Fatiha

Abstract:

In spite of a wide variety of contaminants such as heavy metals and organic compounds in addition to the importance of extended pollution, the deep-sea and its species are not in haven and being affected through contaminants exposure. This investigation is performed in order to provide data on the presence of pathological changes in the liver and gonads of the greater forkbeard. A total of 998 specimens of the teleost fish Phycis blennoides Brünnich, 1768 ranged from 5,7 to 62,7 cm in total length, were obtained from the commercial fisheries of Algerian ports. The sampling has been carried out monthly from December 2013 to June 2015 and from January to June 2016 caught by trawlers and longlines between 75 and 600 fathoms in the coast of Algeria. Individuals were sexed their gonads, and their livers were removed and processed for light microscopy and one case of atresia was identified. In whole, overall 0,002% of the specimens presented some degree of liver steatosis. For the gastric section, 442 selected stomachs contents were observed looking for parasitic infestation and enumerate 212 nematodes. A prospecting survey for metal contaminant was performed on the liver by atomic absorption spectrophotometry analysis.

Keywords: atresia, coast of Algeria, histopathology, nematode, Phycis blennoides, steatosis

Procedia PDF Downloads 200
81 Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer's Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey

Authors: Gokhan Zengin, Cengiz Sarikurkcu, Abdurrahman Aktumsek, Ramazan Ceylan

Abstract:

The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries.

Keywords: sideritis galatica, antioxidant, monoterpenes, cholinesterase, anti-diabetic

Procedia PDF Downloads 399
80 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 82
79 Electromagnetic Fields Characterization of an Urban Area in Lagos De Moreno Mexico and Its Correlation with Public Health Hazards

Authors: Marco Vinicio Félix Lerma, Efrain Rubio Rosas, Fernando Ricardez Rueda, Victor Manuel Castaño Meneses

Abstract:

This paper reports a spectral analysis of the exposure levels of radiofrequency electromagnetic fields originating from a wide variety of telecommunications sources present in an urban area of Lagos de Moreno, Jalisco, Mexico. The electromagnetic characterization of the urban zone under study was carried out by measurements in 118 sites. Measurements of TETRA,ISM434, LTE800, ISM868, GSM900, GSM1800, 3G UMTS,4G UMTS, Wlan2.4, LTE2.6, DECT, VHF Television and FM radio signals were performed at distances ranging over 10 to 1000m from 87 broadcasting towers concentrated in an urban area of about 3 hectares. The aim of these measurements is the evaluation of the electromagnetic fields power levels generated by communication systems because of their interaction with the human body. We found that in certain regions the general public exposure limits determined by ICNIRP (International Commission of Non Ionizing Radiation Protection) are overpassed from 5% up to 61% of the upper values, indicating an imminent health public hazard, whereas in other regions we found that these limits are not overpassed. This work proposes an electromagnetic pollution classification for urban zones according with ICNIRP standards. We conclude that the urban zone under study presents diverse levels of pollution and that in certain regions an electromagnetic shielding solution is needed in order to safeguard the health of the population that lives there. A practical solution in the form of paint coatings and fiber curtains for the buildings present in this zone is also proposed.

Keywords: electromagnetic field, telecommunication systems, electropollution, health hazards

Procedia PDF Downloads 363
78 A Time and Frequency Dependent Study of Low Intensity Microwave Radiation Induced Endoplasmic Reticulum Stress and Alteration of Autophagy in Rat Brain

Authors: Ranjeet Kumar, Pravin Suryakantrao Deshmukh, Sonal Sharma, Basudev Banerjee

Abstract:

With the tremendous increase in exposure to radiofrequency microwaves emitted by mobile phones, globally public awareness has grown with regard to the potential health hazards of microwaves on the nervous system in the brain. India alone has more than one billion mobile users out of 4.3 billion globally. Our studies have suggested that radio frequency able to affect neuronal alterations in the brain, and hence, affecting cognitive behaviour. However, adverse effect of low-intensity microwave exposure with endoplasmic reticulum stress and autophagy has not been evaluated yet. In this study, we explore whether low-intensity microwave induces endoplasmic reticulum stress and autophagy with varying frequency and time duration in Wistar rat. Ninety-six male Wistar rat were divided into 12 groups of 8 rats each. We studied at 900 MHz, 1800 MHz, and 2450 MHz frequency with reference to sham-exposed group. At the end of the exposure, the rats were sacrificed to collect brain tissue and expression of CHOP, ATF-4, XBP-1, Bcl-2, Bax, LC3 and Atg-4 gene was analysed by real-time PCR. Significant fold change (p < 0.05) of gene expression was found in all groups of 1800 MHz and 2450 MHz exposure group in comparison to sham exposure group. In conclusion, the microwave exposure able to induce ER stress and modulate autophagy. ER (endoplasmic reticulum) stress and autophagy vary with increasing frequency as well as the duration of exposure. Our results suggested that microwave exposure is harmful to neuronal health as it induces ER stress and hampers autophagy in neuron cells and thereby increasing the neuron degeneration which impairs cognitive behaviour of experimental animals.

Keywords: autophagy, ER stress, microwave, nervous system, rat

Procedia PDF Downloads 103
77 Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation

Authors: Nawel Ouennoughi, Kamel Daoud

Abstract:

During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient.

Keywords: coacervation, gum Arabic, microencapsulation, gelatin

Procedia PDF Downloads 245
76 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System

Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo

Abstract:

To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.

Keywords: naproxen, nickelate, photocatalysis, oxalic acid

Procedia PDF Downloads 177
75 Effects of Cassia tora Seeds Extract on Type 2 Diabetes Induced Mice

Authors: Min-Ju Jo, Min-Young Um, Moonsung Choi, Sooim Shin

Abstract:

Type 2 diabetes (T2D) is characterized by insulin resistance, the inability of β-cell and the dysfunction of mitochondria. To characterize effects of Cassia tora extract on mitochondrial dysfunction related T2D, the reduced glutathione level, amount of mitochondrial complexes and activities of mitochondrial complexes were measured. Three groups of mice were modeled; a control group was fed a normal diet, a diabetic group was fed a diabetic diet high in fat and carbohydrates, and a third group was fed a diabetic diet + 70% ethanol extracted Cassia tora seeds for 12 weeks. The amount of mitochondria was determined by Bradford assay after isolation of mitochondria in liver from each group. During isolation of mitochondria, cytosolic fractions of the tissue were collected to measure the reduced glutathione level. Interestingly, high level of the reduced glutathione was observed in Cassia tora treated group and decreased activities of mitochondrial complexes in Cassia tora treated group compared to the diabetic diet group. It indicates that Cassia tora has the potential to increase the reduced form of glutathione functioned as an important antioxidant in cells, and to reduce mitochondrial metabolic compensatory mechanism.

Keywords: antioxidant, Cassia tora, diabetes, electron transport chain, glutathione, mitochondria, spectrophotometry

Procedia PDF Downloads 146
74 Experimental Lead Toxicity in Lohi Sheep: Risks and Impact on Edible Tissues

Authors: Muhammad Younus, Muhammad Sajid, Muti-ur-Rehman Khan, Aftab Ahmad Anjum, Muhammad Asif Idrees, Iahtasham Khan, Aman Ullah Khan, Sajid Umar, Raheela Akhtar

Abstract:

The present study was conducted to investigate the hazardous effects of lead on health and edible organs of Lohi sheep. The adult Lohi sheep (n=48) were randomly divided into two equal groups. The first group was administered lead acetate at dose of 70 mg/kg live body weight daily as 10% solution by oral route for a period of 90 days and the second group served as a negative control. Blood and tissue samples were collected at day 0, 30, 60 and 90 and analyzed for lead concentration by atomic absorption spectrophotometry. The kidney showed the highest lead concentration (p < 0.05) followed by liver and then muscle. Lead acetate treated sheep showed structural and behavioral changes during the last month of trial. Liver showed necrosis, hemorrhages and hyperactivation of macrophages. Kidney showed degenerative and necrotic changes in glomeruli and tubules and the characteristic intranuclear inclusion bodies in tubular epithelial cells on H and E staining. It was concluded that Lohi sheep is affected by lead intoxication at low dose for longer period and hence exhibits lead accumulation in edible tissues.

Keywords: Lohi sheep, lead acetate, edible tissue, histopathology

Procedia PDF Downloads 432
73 Development of High Quality Refractory Bricks from Fireclays for Industrial Applications

Authors: David E. Esezobor, Friday I. Apeh, Harrison O. Onovo, Ademola A. Agbeleye

Abstract:

Available indigenous refractory bricks in Nigeria can only be used in the lining of furnaces for melting of cast iron operating at less than 1,400°C or in preheating furnaces due to their low refractoriness less than 1,500°C. The bricks crack and shatter on heating at 1350 to 1450°C. In this paper, a simple and adaptable technology of manufacturing high-quality refractory bricks from selected Nigerian clays for furnace linings was developed. Fireclays from Onibode, Owode-Ketu in Ogun State and Kwoi in Kaduna State were crushed, ground, and sieved into various grain sizes using standard techniques. The pulverized clays were blended with alumina in various mix ratios and indurated in the furnace at 900 – 16000C. Their chemical, microstructure and mineralogical properties were characterized using atomic absorption spectrophotometry, scanning electron microscopy and x-ray diffraction spectrometry respectively. The mineralogical and spectrochemical analyses suggested that the clays are of siliceous alumino-silicate and acidic in nature. The appropriate blending of fireclays with alumina provided the tremendous improvement in the refractoriness of the bricks and other acceptable service properties comparable with imported refractory bricks. The change in microstructure from pseudo-hexagonal grains to equiaxed grains of well – ordered sequence of structural layers could be responsible for the improved properties.

Keywords: alumina, furnace, industry, manufacturing, refractoriness

Procedia PDF Downloads 229