Search results for: porosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 564

Search results for: porosity

504 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process

Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava

Abstract:

Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.

Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties

Procedia PDF Downloads 96
503 Generalized Model Estimating Strength of Bauxite Residue-Lime Mix

Authors: Sujeet Kumar, Arun Prasad

Abstract:

The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength.

Keywords: bauxite residue, curing time, porosity/volumetric lime ratio, unconfined compressive strength

Procedia PDF Downloads 201
502 The Use of Arabic Gum Mixed with Carbon Nanotubes Functionalized with Dodecylamine to Fabricate Superior Ultrafiltration Membranes

Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien

Abstract:

In this paper, the effect of adding Arabic Gum (AG) and carbon nanotubes functionalized with dodecylamine (CNT-DDA) to the casting solutions of polysulfone (PS) was investigated. The aim of adding AG and CNT-DDA was to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. Different CNT-DDA loadings (0.1-3.0 wt.%) in 2 wt.% AG were added to PS/dimethylacetamide (DMAc) casting solutions to prepare PS membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PS/AG/CNT-DDA membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of BSA solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG and CNT-DDA to PS membranes was found to increase the hydrophilicity, porosity and hence the permeate flux of the fabricated membranes.

Keywords: Arabic gum, hydrophilicity, polysulfone membrane, ultrafiltration

Procedia PDF Downloads 204
501 Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia

Authors: Mohamed Khali Zidi, Mohsen Henchiri, Walid Ben Ahmed

Abstract:

In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement.

Keywords: travertine, Aptian dolostone, Boulaaba, fracturing

Procedia PDF Downloads 25
500 The Dependence of Carbonate Pore Geometry on Fossils: Examples from Zechstein, Poland

Authors: Adam Fheed

Abstract:

Carbonate porosity can be deceptive in the aspect of hydrocarbon exploration due to pore geometry variations, which are to some extent controlled by fossils. Therefore, the main aim of this paper was to assess the dependence of pore geometry and reservoir quality on fossils. The Permian Zechstein Limestone (Ca1) carbonates from the Brońsko Reef, located on the Wolsztyn Ridge in West Poland, were examined. Seventy meters of drill cores were described along with well log examination and transmitted-light microscope research. The archival porosity-permeability data was utilized to calibrate the well logs and look for the potential petrophysical trends. Several organism assemblages were recognized in the reef. Its bottom was colonized by the branched bryozoans which were fragmented and dissolved leaving poorly connected molds. Subsequently, numerous bivalves and gastropods appeared and their shells were heavily dissolved to form huge, albeit poorly communicated caverns. Such pores were also typical for local brachiopod occurrences. Although the caverns were widespread, and probably linked to the meteoric dissolution or freshwater flushing, severe anhydrite cementation has destroyed the majority of pores. Close to the top of Ca1, near the center of the reef, the fossil-rich zone comprising fenestrate bryozoans, extremely abundant encrusting foraminifers, bivalves, brachiopods, gastropods and ostracods, was identified. The zone contained extremely frequent dissolution channels formed within former shells of foraminifers, which had previously encrusted the bryozoans. The deposition of Ca1 strata has ultimately terminated with a poorly porous and generally impermeable stromatolitic layer containing scarce fossils. In general, the permeability of the reef rocks studied turned out to be the highest under the presence of foraminifer-related channels. In such cases, it frequently approached 100 mD. The presence of channels and other pores gave the average effective porosity derived from shallow resistivity and helium porosimetry of around 16 and 18 %, respectively. The highest porosity (over 18 %), often co-occurring with relatively low permeability (chiefly below 20 mD) was noted for the bottommost zone of the reef, represented by branched bryozoans. This is probably owing to a large amount of unconnected bryozoan-related molds. It was concluded that fossils played a major role in porosity formation and controlled the pore geometry significantly. While the dissolution of bivalves and brachiopods resulted in cavernous porosity formation, numerous molds were typically related with the alteration of branched bryozoans, gastropods and ostracods. Importantly, the bendy dissolution channels after the encrusting foraminifers appeared to be decisive in improving reservoir quality – specifically when permeability is considered. Acknowledgment: The research was financed by the Polish National Science Centre’s project No. UMO-2016/23/N/ST10/00350.

Keywords: dissolution channels, fossils, Permian, porosity

Procedia PDF Downloads 60
499 Effect of Sintering Temperature on Transport Properties of Garnet-Type Solid-State Electrolytes for Energy Storage Systems

Authors: U. Farooq, A. Samson, V. Thangadurai, R. Edwards

Abstract:

In recent years, an impressive research has been conducted to introduce the solid-state electrolytes for the future energy storage devices like Li-ion batteries more specifically. In this work we tried to prepare a ceramic electrolyte (Li6.5 La2.5 Ba0.5 Nb Zr O12(LLBNZO)) and sintered the pallets of as-prepared material at elevated temperature like 1050, 1100, 1150 and 1200 °C. The objective to carry out this research was to observe the effect of temperature on porosity, density and transport properties of materials. Preliminary results suggest that the material sintered at higher temperature could show enhanced performance in terms of fast ionic transport. This enhancement in performance can be attributed to low porosity of materials which is result of high temperature sintering.

Keywords: solid state battery, electrolyte, garnet structures, Li-ion battery

Procedia PDF Downloads 247
498 Characterization of Petrophysical Properties of Reservoirs in Bima Formation, Northeastern Nigeria: Implication for Hydrocarbon Exploration

Authors: Gabriel Efomeh Omolaiye, Jimoh Ajadi, Olatunji Seminu, Yusuf Ayoola Jimoh, Ubulom Daniel

Abstract:

Identification and characterization of petrophysical properties of reservoirs in the Bima Formation were undertaken to understand their spatial distribution and impacts on hydrocarbon saturation in the highly heterolithic siliciclastic sequence. The study was carried out using nine well logs from Maiduguri and Baga/Lake sub-basins within the Borno Basin. The different log curves were combined to decipher the lithological heterogeneity of the serrated sand facies and to aid the geologic correlation of sand bodies within the sub-basins. Evaluation of the formation reveals largely undifferentiated to highly serrated and lenticular sand bodies from which twelve reservoirs named Bima Sand-1 to Bima Sand-12 were identified. The reservoir sand bodies are bifurcated by shale beds, which reduced their thicknesses variably from 0.61 to 6.1 m. The shale content in the sand bodies ranged from 11.00% (relatively clean) to high shale content of 88.00%. The formation also has variable porosity values, with calculated total porosity ranged as low as 10.00% to as high as 35.00%. Similarly, effective porosity values spanned between 2.00 to 24.00%. The irregular porosity values also accounted for a wide range of field average permeability estimates computed for the formation, which measured between 0.03 to 319.49 mD. Hydrocarbon saturation (Sh) in the thin lenticular sand bodies also varied from 40.00 to 78.00%. Hydrocarbon was encountered in three intervals in Ga-1, four intervals in Da-1, two intervals in Ar-1, and one interval in Ye-1. Ga-1 well encountered 30.78 m thick of hydrocarbon column in 14 thin sand lobes in Bima Sand-1, with thicknesses from 0.60 m to 5.80 m and average saturation of 51.00%, while Bima Sand-2 intercepted 45.11 m thick of hydrocarbon column in 12 thin sand lobes with an average saturation of 61.00% and Bima Sand-9 has 6.30 m column in 4 thin sand lobes. Da-1 has hydrocarbon in Bima Sand-8 (5.30 m, Sh of 58.00% in 5 sand lobes), Bima Sand-10 (13.50 m, Sh of 52.00% in 6 sand lobes), Bima Sand-11 (6.20 m, Sh of 58.00% in 2 sand lobes) and Bima Sand-12 (16.50 m, Sh of 66% in 6 sand lobes). In the Ar-1 well, hydrocarbon occurs in Bima Sand-3 (2.40 m column, Sh of 48% in a sand lobe) and Bima Sand-9 (6.0 m, Sh of 58% in a sand lobe). Ye-1 well only intersected 0.5 m hydrocarbon in Bima Sand-1 with 78% saturation. Although Bima Formation has variable saturation of hydrocarbon, mainly gas in Maiduguri, and Baga/Lake sub-basins of the research area, its highly thin serrated sand beds, coupled with very low effective porosity and permeability in part, would pose a significant exploitation challenge. The sediments were deposited in a fluvio-lacustrine environment, resulting in a very thinly laminated or serrated alternation of sand and shale beds lithofacies.

Keywords: Bima, Chad Basin, fluvio-lacustrine, lithofacies, serrated sand

Procedia PDF Downloads 135
497 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer

Authors: W. Sornlar, S. Supothina, A. Wannagon

Abstract:

Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.

Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity

Procedia PDF Downloads 152
496 Research on Tight Sandstone Oil Accumulation Process of the Third Member of Shahejie Formation in Dongpu Depression, China

Authors: Hui Li, Xiongqi Pang

Abstract:

In recent years, tight oil has become a hot spot for unconventional oil and gas exploration and development in the world. Dongpu Depression is a typical hydrocarbon-rich basin in the southwest of Bohai Bay Basin, in which tight sandstone oil and gas have been discovered in deep reservoirs, most of which are buried more than 3500m. The distribution and development characteristics of deep tight sandstone reservoirs need to be studied. The main source rocks in study area are dark mudstone and shale of the middle and lower third sub-member of Shahejie Formation. Total Organic Carbon (TOC) content of source rock is between 0.08-11.54%, generally higher than 0.6% and the value of S1+S2 is between 0.04–72.93 mg/g, generally higher than 2 mg/g. It can be evaluated as middle to fine level overall. The kerogen type of organic matter is predominantly typeⅡ1 andⅡ2. Vitrinite reflectance (Ro) is mostly greater than 0.6% indicating that the source rock entered the hydrocarbon generation threshold. The physical property of reservoir was poor, the most reservoir has a porosity lower than 12% and a permeability of less than 1×10⁻³μm. The rocks in this area showed great heterogeneity, some areas developed desserts with high porosity and permeability. According to SEM, thin section image, inclusion test and so on, the reservoir was affected by compaction and cementation during early diagenesis stage (44-31Ma). The diagenesis caused the tight reservoir in Huzhuangji, Pucheng, Weicheng Area while the porosity in Machang, Qiaokou, Wenliu Area was still over 12%. In the process of middle diagenesis phase stage A (31-17Ma), the reservoir porosity in Machang, Pucheng, Huzhuangji Area increased due to dissolution; after that the oil generation window of source rock was achieved for the first phase hydrocarbon charging (31-23Ma), formed the conventional oil deposition in Machang, Qiaokou, Wenliu, Huzhuangji Area and unconventional tight reservoir in Pucheng, Weicheng Area. Then came to stage B of middle diagenesis phase (17-7Ma), in this stage, the porosity of reservoir continued to decrease after the dissolution and led to a situation that the reservoirs were generally compacted. And since then, the second hydrocarbon filling has been processing since 7Ma. Most of the pools charged and formed in this procedure are tight sandstone oil reservoir. In conclusion, tight sandstone oil was formed in two patterns in Dongpu Depression, which could be concluded as ‘density fist then accumulation’ pattern and ‘accumulation fist next density’ pattern.

Keywords: accumulation process, diagenesis, dongpu depression, tight sandstone oil

Procedia PDF Downloads 91
495 Nanomechanical Properties of Coconut Shell Ash Blended Cement Mortar

Authors: Kumator Taku, Bilkisu Amartey

Abstract:

This research used Grid indentation technique to investigate the effect of the addition of Coconut Shell Ash (CSA) on the nanomechanical properties of the main phases of the hydrated cement paste. Portland cement was partially replaced with 15% CSA at a water-binder ratio of 0.5 and cubes casted and cured for 28 days after which they were polished to reduce surface roughness to the barest minimum. The result of nanoindentation shows that addition of 15% CSA to cement paste transforms portlandite to C-S-H by the pozzolanic reaction. More so, there is reduced porosity and a reduction in the volume of CH by the addition of the CSA. Even though the addition of 15% CSA does not drastically change the average values of the hardness and elastic modulus of the two phases of the C-S-H, it greatly modifies their relative proportions, leading to the production of more HD C-S-H. Overall, incorporating 15%CSA to cement mortar improves the Nanomechanical properties of the four main phases of the hydrated cement paste.

Keywords: Coconut Shell Ash, Elastic Modulus, Hardness, Nanoindentation, Porosity

Procedia PDF Downloads 96
494 Petrophysical Interpretation of Unconventional Shale Reservoir Naokelekan in Ajeel Oil-Gas Field

Authors: Abeer Tariq, Mohammed S. Aljawad, Khaldoun S. Alfarisi

Abstract:

This paper aimed to estimate the petrophysical properties (porosity, permeability, and fluid saturation) of the Ajeel well (Aj-1) Shale reservoir. Petrophysical properties of the Naokelekan Formation at Ajeel field are determined from the interpretation of open hole log data of one well which penetrated the source rock reservoir. However, depending on these properties, it is possible to divide the Formation which has a thickness of approximately 28-34 m, into three lithological units: A is the upper unit (thickness about 9 to 13 m) consisting of dolomitized limestones; B is a middle unit (thickness about 13 to 20 m) which is composed of dolomitic limestone, and C is a lower unit (>22 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.024), the average resistivity of the mud filtration (Rmf = 0.46), and the Archie parameters were determined by the picket plot method, where (m) value equal to 1.86, (n) value equal to 2 and (a) value equal to 1. Also, this reservoir proved to be economical for future developments to increase the production rate of the field by dealing with challenging reservoirs. In addition, Porosity values and water saturation Sw were calculated along with the depth of the composition using Interactive Petrophysics (IP) V4.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second and third zone. From the flow zone indicator FZI method, there are two rock types in the studied reservoir.

Keywords: petrophysical properties, porosity, permeability, ajeel field, Naokelekan formation, Jurassic sequences, carbonate reservoir, source rock

Procedia PDF Downloads 65
493 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: electrospinning, gelatin, silk fibroin, mechanical properties, nanocomposites

Procedia PDF Downloads 120
492 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 122
491 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 48
490 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications

Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan

Abstract:

The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.

Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo

Procedia PDF Downloads 118
489 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 263
488 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite

Authors: Danuta Barnat-Hunek

Abstract:

The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.

Keywords: hydrophobisation, mortars, salt crystallization, frost resistance

Procedia PDF Downloads 175
487 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 340
486 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 87
485 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture

Authors: Kai-Wei Huang, Yi-Feng Lin

Abstract:

The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.

Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane

Procedia PDF Downloads 317
484 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 364
483 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 115
482 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl

Abstract:

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Keywords: admixture, organisms, porosity, strength

Procedia PDF Downloads 209
481 Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures

Authors: Mohammad Alroaithi

Abstract:

Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies.

Keywords: polymer, porous particles, microfluidics, porous structures

Procedia PDF Downloads 161
480 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

Hot-dip aluminizing (HDA) is one of the several aluminizing methods to form a wear-, corrosion- and oxidation-resistant aluminide layers on the surface. In this method, the substrate is dipped into a molten aluminum bath, hold in the bath for several minutes, and cooled down to the room temperature in air. A subsequent annealing after the HDA process is generally performed. The main advantage of HDA is its very low investment cost in comparison with other aluminizing methods such as chemical vapor deposition (CVD), pack aluminizing and metalizing. In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology, such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 HV and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is, therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.

Keywords: hot-dip aluminizing, microstructure, hardness measurement, diffusion annealing

Procedia PDF Downloads 40
479 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 174
478 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication

Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan

Abstract:

We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.

Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers

Procedia PDF Downloads 125
477 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 278
476 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: apparent porosity, beneficiation, low-grade chromite, refractory, spinel compounds, slag resistance

Procedia PDF Downloads 356
475 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties

Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten

Abstract:

The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.

Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions

Procedia PDF Downloads 251