Search results for: porous structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4628

Search results for: porous structures

4628 Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures

Authors: Mohammad Alroaithi

Abstract:

Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies.

Keywords: polymer, porous particles, microfluidics, porous structures

Procedia PDF Downloads 161
4627 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation

Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh

Abstract:

This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application.

Keywords: dewetting, themal annealing, metal, melting point, porous

Procedia PDF Downloads 626
4626 Memristive Properties of Nanostructured Porous Silicon

Authors: Madina Alimova, Margulan Ibraimov, Ayan Tileu

Abstract:

The paper describes methods for obtaining porous structures with the properties of a silicon-based memristor and explains the electrical properties of porous silicon films. Based on the results, there is a positive shift in the current-voltage characteristics (CVC) after each measurement, i.e., electrical properties depend not only on the applied voltage but also on the previous state. After 3 minutes of rest, the film returns to its original state (reset). The method for obtaining a porous silicon nanofilm with the properties of a memristor is simple and does not require additional effort. Based on the measurement results, the typical memristive behavior of the porous silicon nanofilm is analyzed.

Keywords: porous silicon, current-voltage characteristics, memristor, nanofilms

Procedia PDF Downloads 98
4625 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds

Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi

Abstract:

Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.

Keywords: bone scaffolds, diffusivity, numerical simulation, tissue engineering

Procedia PDF Downloads 351
4624 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy

Procedia PDF Downloads 462
4623 Wave Propagation In Functionally Graded Lattice Structures Under Impact Loads

Authors: Mahmood Heshmati, Farhang Daneshmand

Abstract:

Material scientists and engineers have introduced novel materials with complex geometries due to the recent technological advances and promotion of manufacturing methods. Among them, lattice structures with graded architectures denoted by functionally graded porous materials (FGPMs) have been developed to optimize the structural response. FGPMs are achieved by tailoring the size and density of the internal pores in one or more directions that lead to the desired mechanical properties and structural responses. Also, FGPMs provide more flexible transition and the possibility of designing and fabricating structural elements with complex and variable properties. In this paper, wave propagation in lattice structures with functionally graded (FG) porosity is investigated in order to examine the ability of shock absorbing effect. The behavior of FG porous beams with different porosity distributions under impact load and the effects of porosity distribution and porosity content on the wave speed are studied. Important conclusions are made, along with a discussion of the future scope of studies on FGPMs structures.

Keywords: functionally graded, porous materials, wave propagation, impact load, finite element

Procedia PDF Downloads 41
4622 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 209
4621 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia PDF Downloads 287
4620 Modeling of the Flow through an Earth Dam and Geotechnical Slope Analyzes

Authors: Ahmed Ferhati, Arezki Adjrad, Ratiba Mitiche-Kettab, Hakim Djafer Khodja

Abstract:

The porous media are omnipresent around us that they are natural as sand, clay, rocks, or manufactured like concretes, cement, and ceramics. The variety of porous environment indicates a wide material range which can be very different from each other. Their common point is to be made up of a solid matrix and a porous space. In our case of study, we made the modeling of the flows in porous environments through the massives as in the case of an earth dam. The computer code used (PLAXIS) offer the possibility of modeling of various structures, in particular, the works in lands because that it deals with the pore water pressure due to the underground flow and the calculation of the plastic deformations. To confirm results obtained by PLAXIS, GeoStudio SEEP/W code was used. This work treats modeling of flows and mechanical and hydraulic behavior of earth dam. A general framework which can fit the calculation of this kind of structures and the coupling of the soil consolidation and free surface flows was defined. In this study; we have confronted a real case modeling of an earth dam. It was shown, in particular, that it is possible to entirely lead the calculation of real dam and to get encouraging results from the hydraulic and mechanical point of view.

Keywords: analyzes, dam, flow, modeling, PLAXIS, seep/w, slope

Procedia PDF Downloads 280
4619 Adsorption of Toluene from Aqueous Solutions by Porous Clay Hetero-Structures

Authors: F. Asadi, M. M. Zerafat, S. Sabbaghi

Abstract:

Among water pollutants, volatile organic compounds can cause severe long lasting effects not only on biotic organism but also on human health. As a result, this material group has attracted more attention in recent years. Adsorption is one of the common processes for remediation of aromatic compounds. In this study, porous clay hetrostructers (PCHs) are synthesized through gallery template approach and cetyltrimethylammonium bromide and dodecylamine used as template and co-template, respectively. Porous clay is characterized by XRD and FTIR. Batch adsorption experiments were carried out to investigate the effect of various adsorption parameters like adsorbent dosage, pH, initial concentration and contact time. It was found that by increasing adsorbent dosage from 0.5gr/lit to 4gr/lit, toluene removal is increased from 34% to 88.1%. Increasing contact time and decreasing the pH of aqueous solution increases toluene removal efficiency.

Keywords: adsorption, clay, nano-porous, toluene

Procedia PDF Downloads 305
4618 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media

Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb

Abstract:

Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.

Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions

Procedia PDF Downloads 510
4617 Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate

Authors: Amirhossein Hasani, Shamin Houshmand Sharifi

Abstract:

In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity.

Keywords: graphene oxide, porous silicon, humidity sensor, electrochemical

Procedia PDF Downloads 576
4616 Experimental Technique to Study Colloid Deposition in Porous Media

Authors: Abdelkader Djehiche, Mostefa Gafsi, Henri Bertin, Aziz Omari

Abstract:

The flows of colloidal suspensions in porous media find many applications in fields such as Petroleum, Hydraulic engineering, deep-bed filtration. For each application, the scientific problems can be summarized the flow in porous medium of a colloidal suspension whose particles having characteristic dimension is considerable in comparison with the pores dimension. In certain cases, one can observe a deposit of particles on the surface of the pores which results in a significant modification in the physical properties of the porous medium. The objective of our study is to use a non-destructive experimental method, the attenuation of g-rays, to study the influence of the number of Peclet on the deposit of latex particles in a consolidated porous medium. The first results obtained show a good agreement between local and global measurements of the deposit of the particles in porous medium. The deposit takes place in a progressive way along the porous medium and leads to a monolayer deposit of which the average thickness is of about the size diameter of the colloidal particles.

Keywords: colloid, gamma ray, Peclet number, permeability, porous medium

Procedia PDF Downloads 150
4615 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 181
4614 Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp

Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz

Abstract:

Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.

Keywords: brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle

Procedia PDF Downloads 99
4613 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement

Authors: Yunha Ryu, Kyoungsik Kim

Abstract:

Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.

Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy

Procedia PDF Downloads 592
4612 Formation and Characterization of the Epoxy Resin-Porous Glass Interphases

Authors: Aleksander Ostrowski, Hugh J. Byrne, Roland Sanctuary

Abstract:

Investigation of the polymer interphases is an emerging field nowadays. In many cases interphases determine the functionality of a system. There is a great demand for exploration of fundamental understanding of the interphases and elucidation of their formation, dimensions dependent on various influencing factors, change of functional properties, etc. The epoxy applied on porous glass penetrates its pores with an extent dependent on the pore size, temperature and epoxy components mixing ratio. Developed over the recent time challenging sample preparation procedure allowed to produce very smooth epoxy-porous glass cross-sections. In this study, Raman spectroscopy was used to investigate the epoxy-porous glass interphases. It allowed for chemical differentiation between different regions at the cross-section and determination of the degree of cure of epoxy system in the porous glass.

Keywords: interphases, Raman spectroscopy, epoxy, porous glass

Procedia PDF Downloads 365
4611 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 103
4610 Numerical Prediction of Entropy Generation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.

Keywords: heat exchangers, porous medium, second law approach, turbulent flow

Procedia PDF Downloads 264
4609 Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media

Authors: S. Akridiss, E. El Tabach, K. Chetehouna, N. Gascoin, M. S. Kadiri

Abstract:

Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35

Keywords: experimental study, permeability, porous material, suspended particles

Procedia PDF Downloads 250
4608 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 373
4607 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic

Authors: Mehieddine Bouatrous

Abstract:

Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.

Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability

Procedia PDF Downloads 44
4606 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 245
4605 Strong Microcapsules with Macroporous Polymer Shells

Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart

Abstract:

Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.

Keywords: microcapsules, micromechanics, porosity, polymer shells

Procedia PDF Downloads 417
4604 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints

Procedia PDF Downloads 208
4603 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 46
4602 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 381
4601 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 85
4600 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).

Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation

Procedia PDF Downloads 431
4599 Modeling of Flows in Porous Materials under Pressure Difference

Authors: Nicoleta O. Tanase, Ciprian S. Mateescu

Abstract:

This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.

Keywords: CFD, porous media, permeability, flow spectrum

Procedia PDF Downloads 19