Search results for: plant oils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3730

Search results for: plant oils

3460 Technical and Economical Evaluation of Electricity Generation and Seawater Desalination Using Nuclear Energy

Authors: A. Hany A. Khater, G. M. Mostafa, M. R. Badawy

Abstract:

The techno-economic analysis of the nuclear desalination is a very important tool that enables studying of the mutual effects between the nuclear power plant and the coupled desalination plant under different operating conditions, and hence investigating the feasibility of safe and economical production of potable water. For this purpose, a comprehensive model for both technical and economic performance evaluation of the nuclear desalination has been prepared. The developed model has the capability to be used in performing a parametric study for the performance measuring parameters of the nuclear desalination system. Also a sensitivity analysis of varying important factors such as interest/discount rate, power plant availability, fossil fuel prices, purchased electricity price, nuclear fuel cost, and specific base cost for both power and water plant has been conducted.

Keywords: uclear desalination, PWR, MED, MED-TVC, MSF, RO

Procedia PDF Downloads 695
3459 Feasibility of BioMass Power Generation in Punjab Province of Pakistan

Authors: Muhammad Ghaffar Doggar, Farah

Abstract:

The primary objective of this feasibility study is to conduct a techno-financial assessment for installation of biomass based power plant in Faisalabad division. The study involves identification of best site for power plant followed by an assessment of biomass resource potential in the area and propose power plant of suitable size. The study also entailed comprehensive supply chain analysis to determine biomass fuel pricing, transportation and storage. Further technical and financial analyses have been done for selection of appropriate technology for the power plant and its financial viability, respectively. The assessment of biomass resources and the subsequent technical analysis revealed that 20 MW biomass power plant could be implemented at one of the locations near Faisalabad city i.e. AARI Site, Near Chak Jhumra district Faisalabad, Punjab province. Three options for steam pressure; namely, 70 bar, 90 bar and 100 bar boilers have been considered. Using international experience and prices on power plant technology and local prices on locally available equipment, the study concludes biomass fuel price of around 50 US dollars (USD) per ton when delivered to power plant site. The electricity prices used for feasibility calculations were 0.13 USD per KWh for electricity from a locally financed project and 0.11 USD per KWh for internationally financed power plant. For local financing the most viable choice is the 70 bar solution and with international financing, the most feasible solution is using a 90 bar boiler. Between the two options, the internationally financed 90 bar boiler setup gives better financial results than the locally financed 70 bar boiler project. It has been concluded that 20 MW with 90 bar power plant and internationally financed would have an equity IRR of 23% and a payback period of 7 years. This will be a cheap option for installation of power plants.

Keywords: AARI, Ayub agriculture research institute, biomass - crops residue, KWh - electricity Units, MG - Muhammad Ghaffar

Procedia PDF Downloads 315
3458 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria

Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov

Abstract:

Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.

Keywords: bacteria, inoculation, soybean, microbial activity

Procedia PDF Downloads 121
3457 Specialized Phytochemical Properties of Stachys inflata Eco-Types in Different Ecological Circumstances of Southern Iran

Authors: Ghasem Khodahami, Vahid Rowshan, Mojtaba Pakparvar

Abstract:

Stachys forms one of the largest genera in the flowering plant family Lamiaceae. The number of species in the genus is estimated from about 300 to about 450 and comprises some 34 species in Iran. This genus is one of the richest sources of diterpenes which are particularly interesting because of their ecological role as antifeedants against different species of insects and for their role as the medicinal properties of the plants. The ecological distribution of Stachys inflata was studied and the resulted eco-types were sampled from four regions ranging 230-340 mm of rainfall and 1690-2125 m a.s.l of height In Fars Province Southern Iran. The essential oils of air-dried samples were obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography/mass spectrometry. The number of secondary metabolites varied from 25 to 50 depending to ecological conditions. The main compounds in these areas were: Germacrene D, Bicyclogermacrene, spathulenol, δ-cadinene. Statistical analysis of photochemical resulted in recognizing 3 distinct groups that show internal variety in these herbs.

Keywords: eco-type, phytochemistry, secondary metabolites, Stachys inflata

Procedia PDF Downloads 188
3456 Selection of Landscape Plant Species: A Experiment of Noise Reduction by Vibration of Plant Leaves

Authors: Li Mengmeng, Kang Jian

Abstract:

With the rapid development of the city, the noise pollution becomes more and more serious. Noise has seriously affected people's normal life, study and work. In addition, noise has seriously affected the city's ecological environment and the migration of birds. Therefore, it is urgent to control the noise. As one of natural noise-reducing materials, plants have been paid more and more attention. In urban landscape design, it is very important to choose plant species with good noise reduction effect to the sustainable development of urban ecology. The aim of this paper is to find out the characteristics of the plant with good noise reduction effect and apply it in urban landscape design. This study investigated the vibration of leaves of six plant species in a sound field using a Keyence (IG-1000/CCD) Laser Micrometer. The results of the experiments showed that the vibration speed of plant leaves increased obviously after being stimulated by sound source, about 5-10 times. In addition, when driven by the same sound, the speed of all leaves varied with the difference of leaf thickness, leaf size and leaf mass. The speed of all leaves would increase with the increase of leaf size and leaf mass, while those would decrease with the increase of leaf thickness.

Keywords: landscape design, leaf vibration , noise attenuation, plants configuration

Procedia PDF Downloads 196
3455 Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth

Authors: Meiyan Xing, Cenran Li, Liang Xiang

Abstract:

Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease.

Keywords: cow dung vermicompost, seed germination, seedling growth, sludge utilization

Procedia PDF Downloads 236
3454 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 107
3453 Ethno-Medical Potentials of Tacazzea apiculata Oliv. (Periplocaceae)

Authors: Abubakar Ahmed, Zainab Mohammed, Hadiza D. Nuhu, Hamisu Ibrahim

Abstract:

Introduction: The plant Tacazzea apiculata Oliv (Periplocaceae) is widely distributed in tropical West Africa. It is claimed to have multiple uses in traditional medicine among which are its use to treat hemorrhoids, inflammations and cancers. Methods: Ethno-botanical survey through interview and using show-and-tell method of data collection were conducted among Hausa and Fulani tribes of northern Nigeria with the view to document useful information on the numerous claims by the local people on the plant. Results: The results revealed that the plant T. apiculata has relative popularity among the herbalist (38.2 %), nomads (14.8 %) and fishermen (16.0%). The most important uses of the plant in traditional medicine are inflammation (Fedelity level: 25.7 %) and Haemorrhoids (Fedelity level: 17.1 %) Conclusion: These results suggest the relevance of T. apiculata in traditional medicine and as a good candidate for drug Development.

Keywords: ethno-botany, periplocaceae, Tacazzea apiculata, traditional medicine

Procedia PDF Downloads 479
3452 Development of a Model for the Redesign of Plant Structures

Authors: L. Richter, J. Lübkemann, P. Nyhuis

Abstract:

In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.

Keywords: change driven factory redesign, factory planning, plant structure, flexibility

Procedia PDF Downloads 248
3451 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: exergy, pinch, combined cycle power plant, supercritical steam

Procedia PDF Downloads 111
3450 A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes

Authors: Martin Grootveld, Benita Percival, Sarah Moumtaz, Kerry L. Grootveld

Abstract:

Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.

Keywords: frying oils, lipid oxidation products, frying episodes, chemometrics, principal component regression, NMR Analysis, cytotoxic/genotoxic aldehydes

Procedia PDF Downloads 140
3449 Investigating the Effect of Height on Essential Oils of Urtica diocia L.: Case Study of Ramsar, Mazandaran, Iran

Authors: Keivan Saeb, Azade Kakouei, Razieh Jafari Hajati, Khalil Pourshamsian, Babak Babakhani

Abstract:

Urtica Diocia L. from the Urticaceae family is a plant of herbal value and of a noticeable distribution in the north of Iran. The growth of different plants in various natural environments and ecosystems seems to be affected by factors such as the height (from sea surface).To investigate the effect of height on Urtica Diocia L. medicine compounds in its natural environment, three areas with the height of zero, 800 and 1800m were selected.The samples were randomly gathered three times and were dried; also, their compounds was extracted using the Clivenger with the water-distilling method. To determine the medicine compounds, the GC-MS as well as the GC machines were used. The analysis of variance was done in the form of the random-full-block design. The results indicated that there was a significant difference between the percent of EOs in the selected heights; however, such difference was not significant within each height. From among the eight flavors of the study, the phytol compound was more in terms of percentage. By increasing the height the percent of EOs would decrease. lower heights could be considered most appropriate for producing the studied effective materials despite of the moistened climate and soil there.

Keywords: Urtica diocia L., height, EOs, medicine

Procedia PDF Downloads 431
3448 Chemistry and Biological Activity of Feed Additive for Poultry Farming

Authors: Malkhaz Jokhadze, Vakhtang Mshvildadze, Levan Makaradze, Ekaterine Mosidze, Salome Barbaqadze, Mariam Murtazashvili, Dali Berashvili, Koba sivsivadze, Lasha Bakuridze, Aliosha Bakuridze

Abstract:

Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called “Phytobiotic” containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through in vitro and in vivo studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol β-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and γ-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe.

Keywords: clary, essential oils, monarda, poultry, phytobiotics, thyme

Procedia PDF Downloads 146
3447 Anti-Microbial Activity of Senna garrettiana Extract

Authors: Pun Jankrajangjaeng

Abstract:

Senna garrettiana is a climatic tropical plant in Southeast Asia. Senna garrettiana (Craib) is used as a medicinal plant in Thailand, in which the experiment reported that the plant contains triterpenoids, ligans, phenolics, and fungal metabolites. Thus, it is also reported that the plant possesses interesting biological activity such as antioxidant activity. Therefore, Senna garrettiana is selected to examine the antimicrobial activity. The purpose of this study is to examine the antimicrobial activity of Senna garrettiana (crab) extract against Gram-positive Staphylococcus aureus and Gram-negative Salmonella typhi, and the fungus Candida albicans. This study performed the agar disk-diffusion method and broth microdilution by using five concentrations of plant extract to determine the minimum inhibitory concentration (MIC) of S. garrettiana extract. The result showed that S. garrettiana extract gave the maximum zone inhibition of 11.7 mm, 13.7 mm, and 14.0 mm against S. aureus, S. typhi, and C. albicans, respectively. The MIC value of S. garrettiana against S. aureus was 125 µg/mL while the MIC in S. typhi and C. albicans greater than 2000 µg/mL. To conclude, S. garrettiana extract showed higher sensitivity of antibacterial activity against gram-positive bacteria than gram-negative bacteria. In addition, the plant extracts also possessed antifungal activity. Therefore, further investigation to confirm the mechanism of action of antimicrobial activity in S. garrettiana extract should be performed to identify the target of the antimicrobial action.

Keywords: antimicrobial activity, Candida albicans, Salmonella typhi, Senna garrettiana, Staphylococcus aureus

Procedia PDF Downloads 167
3446 Chemical Constituents and Biological Evaluation of Leaves Essential Oils of Vitex agnus-castus L. Growing in the Southern-West Algeria

Authors: Abdallah Habbab, Khaled Sekkoum, Nasser Belboukhari

Abstract:

Objective: This study is designed to examine the chemical composition, antioxidant and antibacterial activities of the essential oil extracted from leaves of Vitex agnus-castus. Methods: The essential oils of dry leaves of Vitex agnus-castus L. were obtained by hydro-distillation, afforded oil in the yield of 5.5% and their volatile constituents were identified by GC/MS. Antioxidant activity of the sample was determined by test system DPPH. Antifungal activity was tested against three fungal strains (Aspergillus flavus, Penicillium escpansum and Aspergillus ochraceus) by direct contact method. Results: Forty-three compounds were identified, representing 98.02% of the oil. Major components of the oil were 1,8-cineole (18.27 %), caryophyllene (8.60 %), N-(M-fluorophenyl)-maleimide (6.30 %), (+)-epi-bicyclosesquiphellandrene (6.00 %), terpinen-4-ol (5.57 %), pyrrolo (3,2,1-jk) carbazole (5.43 %), caryophyllene oxide (4.79 %), and phenol (4.09 %). Conclusion: The chemical constituents in the essential oil from the locally grown Vitex agnus-castus were identified. Therefore, the essential oil of Vitex agnus-castus is an active candidate which would be used as antioxidant, or antifungal agent in new drugs preparation for therapy of diseases.

Keywords: Vitex agnus-castus, essential oil, GC/MS, DPPH, 1, 8-cineole

Procedia PDF Downloads 427
3445 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.

Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel

Procedia PDF Downloads 319
3444 Seasonal Stirred Variations in Chemical Composition and Antifungal Activity of Medicinal Plants Turraea holstii and Clausena anisata

Authors: Francis Machumi, Ester Innocent, Pius Yanda, Philip C. Stevenson

Abstract:

Curative dependence of traditionally used medicinal plants on season of harvest is an alleged claim by traditional health practitioners. This study intended to verify these claims by investigating antifungal activity and chemical composition of traditionally used medicinal plants Turraea holstii and Clausena anisata harvested in rainy season and dry season. The antifungal activities were determined by broth microdilution method whereas chemical profiling of the extracts from the plant materials was done by gas chromatography (GC). Results indicated that extracts of plant materials harvested in dry season showed enhanced antifungal activity as compared to extracts of plant materials harvested in rainy season. GC chromatograms showed overalls increase in number and amount of chemical species for extracts of plant materials harvested in dry season as compared to extracts of plant materials harvested in rainy season.

Keywords: antifungal activity, chemical composition, medicinal plants, seasonal dependence

Procedia PDF Downloads 395
3443 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson

Authors: R. O. Anyasi, H. I. Atagana

Abstract:

In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.

Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor

Procedia PDF Downloads 353
3442 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant

Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha

Abstract:

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.

Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata

Procedia PDF Downloads 361
3441 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: dehydrogenation and hydrogenation, reaction coupling, design and control, process integration

Procedia PDF Downloads 309
3440 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 312
3439 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology

Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles

Abstract:

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design

Procedia PDF Downloads 292
3438 Effect in Animal Nutrition of Genetical Modified Plant(GM)

Authors: Abdullah Özbilgin, Oguzhan Kahraman, Mustafa Selçuk Alataş

Abstract:

Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. The land area devoted to the cultivation of genetically modified (GM) plants has increased in recent years: in 2012 such plants were grown on over 170 million hectares globally, in 28 different countries, and are at resent used by 17.3 million farmers worldwide. The majority of GM plants are used as feed material for food-producing farm animals. Despite the facts that GM plants have been used as feed for years and a number of feeding studies have proved their safety for animals, they still give rise to emotional public discussion.

Keywords: crops, genetical modified plant(GM), plant, safety

Procedia PDF Downloads 536
3437 Studies on Tolerance of Chickpea to Some Pre and Post Emergence Herbicides

Authors: Rahamdad Khan, Ijaz Ahmad Khan

Abstract:

In modern agriculture the herbicides application are considered the most effective and fast in action against all types of weeds. But it’s a fact that the herbicide applicator cannot totally secure the crop plants from the possible herbicide injuries that further leads to several destructive changes in plant biochemistry. For the purpose pots studies were undertaken to test the tolerance order of chickpea against pre- emergence herbicides (Stomp 330 EC- Dual Gold 960 EC) and post- emergence herbicides (Topik 15 WP- Puma Super 75 EW- Isoproturon 500 EW) during 2012-13 and 2013-14. The experimental design was CRD with three replications. Plant height, number of branches plant-1, number of seeds plant-1, nodulation, seed protein contents and other growth related parameters in chickpea were examined during the investigations. The results indicate that all the enquire herbicides gave a significant variation to all recorded parameter of chick pea except nodule fresh and dray weight. Moreover the toxic effect of pre-emergence herbicide on chickpea was found higher as compared to post-emergence herbicides. Minimum chickpea plant height (50.50 cm), number of nodule plant-1 (17.83) and lowest seed protein (14.13 %) was recorded in Stomp 330 EC. Similarly the outmost seeds plant-1 (29.66) and number of nodule plant-1 (21) were found for Puma Super 75 EW. The results further showed that the highest seed protein content (21.75 and 21.15 %) was recorded for control/ untreated and Puma Super 75EW. Taking under concentration the possible negative impact of the herbicides the chemical application must be minimized up to certain extent at which the crop is mostly secure. However chemical weed control has many advantages so we should train our farmer regarding the proper use of agro chemical to minimize the loses in crops while using herbicides.

Keywords: chickpea, herbicides, protein, stomp 330 EC, weed

Procedia PDF Downloads 466
3436 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 339
3435 Bone Marrow ARA, EPA, and DHA Fatty Acids are Correlated with Femur Minerals Content and Enzyme of Bone Formation in Growing Rabbits

Authors: Al-Nouri Doha Mostfa, Al-Khalifa Abdulrahman Salih

Abstract:

The effects of long-term supplementation with different dietary omega-6/omega-3 (ω-6/ω-3) polyunsaturated fatty acid (PUFAs) ratios on the bone marrow fatty acids level, plasma biomarkers of bone metabolism, and minerals content in bone were evaluated in rabbits. Weanling male and female New Zealand white rabbits were randomly assigned to five groups and fed ad libitum for 100 days on diets containing 70 g/kg different dietary oils which providing the following ω-6/ω-3 ratios: soy bean oil (SBO control, 8.68), sesame oil (SO, 21.75), fish oil (FO, 0.39), DHA algae oil (DHA, 0.63), and DHA and ARA algae oils (DHA/ARA, 0.68). The bone marrow arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) fatty acid levels were significantly influenced by and reflected the dietary ω-6/ω-3 ratios fed to rabbits. Rabbits fed on the FO diet maintained a lower ω-6/ω-3 ratio and a higher EPA and DHA levels, those fed on the DHA/ARA diet maintained a lower ω-6/ω-3 ratio and a higher ARA level, while those fed on the SO diet maintained a higher ω-6/ω-3 ratio and a lower ARA level. Plasma alkaline phosphatase (ALP) activity was significantly higher in male and female rabbits fed the DHA/ARA diet compared with those fed the control, SO, FO, or DHA diets. There was a significant main effect of dietary treatment on femur calcium (Ca), phosphorous (P), magnesium (Mg), and zinc (Zn) contents in both genders. This study confirmed that different dietary oil sources with varying ω-6/ω-3 ratios significantly altered the fatty acids level of bone marrow. In addition, the significant elevation in minerals content and the maintenance of optimal Ca/P ratio in bone of DHA/ARA and DHA fed groups beside the significant elevation in ALP activity in the DHA/ARA fed group proved that marine algae oils may be promising dietary sources for promoting bone mineralization and formation, thus improving bone mass during the growth stage.

Keywords: arachidonic (ARA), docosahexaenoic (DHA), eicosapentaenoic (EPA), growing rabbits

Procedia PDF Downloads 460
3434 Investigating the Insecticidal Effects of the Hexanic Extracts of Thymus spp. and Eucalyptus spp. on Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

Authors: Reza Sadeghi, Maryam Nazarahari

Abstract:

Considering the effectiveness of plant pesticides in pest control, this group of pesticides can provide an efficient way to reduce the damage caused by pests in agriculture and maintain environmental health. Plant pesticides allow farmers to cultivate their crops by lowering the use of chemical pesticides and help improve the quality of agricultural products. In this research, various plant compounds were extracted from two different sources, thyme and eucalyptus, by using n-hexane solvent and investigated to control cotton bollworm in laboratory conditions. The mortality rates of cotton bollworm (Helicoverpa armigera) caused by different concentrations of hexanic extract formulations were evaluated. The results showed that the varied concentrations of the hexanic extract formulations of thyme and eucalyptus had significant effects on the mortality rates of cotton bollworm larvae during a 24-h exposure period. The hexanic extract of thyme as a plant pesticide can be an effective alternative in agriculture and plant pest control. The use of pesticides in agriculture can help the environment and reduce the problems related to chemical toxins. Also, this research revealed that the types and compounds of plant pesticides can be effective in pest control and help to develop more efficient agricultural strategies.

Keywords: cotton bollworm, thyme, eucalyptus, extract formulation, toxicity

Procedia PDF Downloads 49
3433 Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing

Authors: Astghik R. Sukiasyan

Abstract:

The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food.

Keywords: antioxidant status, maize corn, drought stress, heavy metal

Procedia PDF Downloads 236
3432 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 42
3431 Agronomic Response of Fluted Pumpkin (Telfairia occidentalis Hook. f.) to Planting Densities and Fertilizer Application

Authors: Falodun E. J., Ogbeifun S. O.

Abstract:

The objectives of this study were to investigate the yield, nutrient concentration, and uptake of fluted pumpkin (Telfairia occidentalis Hook. f.) in response to spacing and fertilizer application. Two fluted pumpkin plant populations (10,000 and 20,000 plants ha⁻¹), D1 and D2, were evaluated at three levels of NPK fertilizer (F₁, 20 t ha⁻¹ poultry manure, F₂, 300 kg ha⁻¹ NPK 15:15:15 and F₃, 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ NPK 15:15:15) using a factorial arrangement in a randomized complete block design (RCBD) with three replications. Leaf length, breadth, and the number of leaves were significantly increased at a lower plant population of 10,000 plants ha⁻¹ while herbage yield increased with a higher plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15. Potassium (K) concentration was significantly (p < 0.05) higher at 10,000 plants ha⁻¹ and Iron (Fe) uptake was higher with combine application of organic and inorganic fertilizer (F3). To maximize the good herbage yield of fluted pumpkins, farmers in this locality should adopt a plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 (D2F2) or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15 (D2F3).

Keywords: fertilizers, fluted pumpkin, herbage yield, plant population

Procedia PDF Downloads 150