Search results for: pechini method
18997 Preparation of Nanophotonics LiNbO3 Thin Films and Studying Their Morphological and Structural Properties by Sol-Gel Method for Waveguide Applications
Authors: A. Fakhri Makram, Marwa S. Alwazni, Al-Douri Yarub, Evan T. Salim, Hashim Uda, Chin C. Woei
Abstract:
Lithium niobate (LiNbO3) nanostructures are prepared on quartz substrate by the sol-gel method. They have been deposited with different molarity concentration and annealed at 500°C. These samples are characterized and analyzed by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). The measured results showed an importance increasing in molarity concentrations that indicate the structure starts to become crystal, regular, homogeneous, well crystal distributed, which made it more suitable for optical waveguide application.Keywords: lithium niobate, morphological properties, thin film, pechini method, XRD
Procedia PDF Downloads 44718996 Copper Doping for Enhancing Photocatalytic Efficiency of Barium Ferrite in Degradation of Atrazine under Visible Light
Authors: Tarek S. Jamil, H. A. Abbas, Rabab A. Nasr, Eman S. Mansor, Rose-Noëlle Vannier
Abstract:
The citrate manner (Pechini method) was utilized in elaboration of a novel Nano-sized BaFe(1-x)CuxO3 (x=0.01, 0.05 and 0.10). The prepared photocatalysts were characterized by x-ray diffraction, diffuse reflectance, TEM and the surface area. The prepared samples have a mixture of cubic perovskite structure (main) and orthorhombic phases. The effect of different loads of copper as dopant on the structural properties as well as the photocatalytic activity was demonstrated. The lattice parameter and the unit cell volume of the prepared materials are given. Doping with copper increased the photocatalytic activity of BaFeO3 several times in abstraction of hazardous atrazine that causes acute problems in drinking water treatment facilities. This may be reasoned to low band gap energy of copper doped BaFe(1-x)CuxO3 attributed to oxygen vacancies formation.Keywords: photocatalysis, nano-sized, BaFeO3, copper doping, atrazine
Procedia PDF Downloads 35118995 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite
Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri
Abstract:
The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric
Procedia PDF Downloads 17418994 Sol-Gel Derived Yttria-Stabilized Zirconia Nanoparticles for Dental Applications: Synthesis and Characterization
Authors: Anastasia Beketova, Emmanouil-George C. Tzanakakis, Ioannis G. Tzoutzas, Eleana Kontonasaki
Abstract:
In restorative dentistry, yttria-stabilized zirconia (YSZ) nanoparticles can be applied as fillers to improve the mechanical properties of various resin-based materials. Using sol-gel based synthesis as simple and cost-effective method, nano-sized YSZ particles with high purity can be produced. The aim of this study was to synthesize YSZ nanoparticles by the Pechini sol-gel method at different temperatures and to investigate their composition, structure, and morphology. YSZ nanopowders were synthesized by the sol-gel method using zirconium oxychloride octahydrate (ZrOCl₂.8H₂O) and yttrium nitrate hexahydrate (Y(NO₃)₃.6H₂O) as precursors with the addition of acid chelating agents to control hydrolysis and gelation reactions. The obtained powders underwent TG_DTA analysis and were sintered at three different temperatures: 800, 1000, and 1200°C for 2 hours. Their composition and morphology were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy with associated with Energy Dispersive X-ray analyzer (SEM-EDX), Transmission Electron Microscopy (TEM) methods, and Dynamic Light Scattering (DLS). FTIR and XRD analysis showed the presence of pure tetragonal phase in the composition of nanopowders. By increasing the calcination temperature, the crystallinity of materials increased, reaching 47.2 nm for the YSZ1200 specimens. SEM analysis at high magnifications and DLS analysis showed submicron-sized particles with good dispersion and low agglomeration, which increased in size as the sintering temperature was elevated. From the TEM images of the YSZ1000 specimen, it can be seen that zirconia nanoparticles are uniform in size and shape and attain an average particle size of about 50 nm. The electron diffraction patterns clearly revealed ring patterns of polycrystalline tetragonal zirconia phase. Pure YSZ nanopowders have been successfully synthesized by the sol-gel method at different temperatures. Their size is small, and uniform, allowing their incorporation of dental luting resin cements to improve their mechanical properties and possibly enhance the bond strength of demanding dental ceramics such as zirconia to the tooth structure. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme 'Human Resources Development, Education and Lifelong Learning 2014- 2020' in the context of the project 'Development of zirconia adhesion cements with stabilized zirconia nanoparticles: physicochemical properties and bond strength under aging conditions' (MIS 5047876).Keywords: dental cements, nanoparticles, sol-gel, yttria-stabilized zirconia, YSZ
Procedia PDF Downloads 14818993 Socratic Style of Teaching: An Analysis of Dialectical Method
Authors: Muhammad Jawwad, Riffat Iqbal
Abstract:
The Socratic method, also known as the dialectical method and elenctic method, has significant relevance in the contemporary educational system. It can be incorporated into modern-day educational systems theoretically as well as practically. Being interactive and dialogue-based in nature, this teaching approach is followed by critical thinking and innovation. The pragmatic value of the Dialectical Method has been discussed in this article, and the limitations of the Socratic method have also been highlighted. The interactive Method of Socrates can be used in many subjects for students of different grades. The Limitations and delimitations of the Method have also been discussed for its proper implementation. This article has attempted to elaborate and analyze the teaching method of Socrates with all its pre-suppositions and Epistemological character.Keywords: Socratic method, dialectical method, knowledge, teaching, virtue
Procedia PDF Downloads 13518992 A New Computational Package for Using in CFD and Other Problems (Third Edition)
Authors: Mohammad Reza Akhavan Khaleghi
Abstract:
This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis
Procedia PDF Downloads 11918991 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations
Abstract:
In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method
Procedia PDF Downloads 43518990 Elvis Improved Method for Solving Simultaneous Equations in Two Variables with Some Applications
Authors: Elvis Adam Alhassan, Kaiyu Tian, Akos Konadu, Ernest Zamanah, Michael Jackson Adjabui, Ibrahim Justice Musah, Esther Agyeiwaa Owusu, Emmanuel K. A. Agyeman
Abstract:
In this paper, how to solve simultaneous equations using the Elvis improved method is shown. The Elvis improved method says; to make one variable in the first equation the subject; make the same variable in the second equation the subject; equate the results and simplify to obtain the value of the unknown variable; put the value of the variable found into one equation from the first or second steps and simplify for the remaining unknown variable. The difference between our Elvis improved method and the substitution method is that: with Elvis improved method, the same variable is made the subject in both equations, and the two resulting equations equated, unlike the substitution method where one variable is made the subject of only one equation and substituted into the other equation. After describing the Elvis improved method, findings from 100 secondary students and the views of 5 secondary tutors to demonstrate the effectiveness of the method are presented. The study's purpose is proved by hypothetical examples.Keywords: simultaneous equations, substitution method, elimination method, graphical method, Elvis improved method
Procedia PDF Downloads 14118989 Different Methods of Fe3O4 Nano Particles Synthesis
Authors: Arezoo Hakimi, Afshin Farahbakhsh
Abstract:
Herein, we comparison synthesized Fe3O4 using, hydrothermal method, Mechanochemical processes and solvent thermal method. The Hydrothermal Technique has been the most popular one, gathering interest from scientists and technologists of different disciplines, particularly in the last fifteen years. In the hydrothermal method Fe3O4 microspheres, in which many nearly monodisperse spherical particles with diameters of about 400nm, in the mechanochemical method regular morphology indicates that the particles are well crystallized and in the solvent thermal method Fe3O4 nanoparticles have good properties of uniform size and good dispersion.Keywords: Fe3O4 nanoparticles, hydrothermal method, mechanochemical processes, solvent thermal method
Procedia PDF Downloads 35218988 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model
Authors: Autcha Araveeporn
Abstract:
This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)
Procedia PDF Downloads 44018987 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 17118986 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method
Authors: M. K. Balyan
Abstract:
The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.Keywords: dynamical diffraction, hologram, object image, X-ray holography
Procedia PDF Downloads 39418985 Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem
Authors: N. Guruprasad
Abstract:
This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions.Keywords: computation, efficiency, modified cost, Russell’s approximation method, transportation, Vogel’s approximation method
Procedia PDF Downloads 54918984 Steepest Descent Method with New Step Sizes
Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman
Abstract:
Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence
Procedia PDF Downloads 54018983 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method
Authors: S. Shahrooi, A. Talavari
Abstract:
Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.Keywords: stress intensity factor, crack, torsional loading, meshless method
Procedia PDF Downloads 56618982 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt
Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli
Abstract:
Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas
Procedia PDF Downloads 4018981 An Efficient Approach to Optimize the Cost and Profit of a Tea Garden by Using Branch and Bound Method
Authors: Abu Hashan Md Mashud, M. Sharif Uddin, Aminur Rahman Khan
Abstract:
In this paper, we formulate a new problem as a linear programming and Integer Programming problem and maximize profit within the limited budget and limited resources based on the construction of a tea garden problem. It describes a new idea about how to optimize profit and focuses on the practical aspects of modeling and the challenges of providing a solution to a complex real life problem. Finally, a comparative study is carried out among Graphical method, Simplex method and Branch and bound method.Keywords: integer programming, tea garden, graphical method, simplex method, branch and bound method
Procedia PDF Downloads 62518980 Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets
Authors: Osamu Igawa, Hiroshi Kouchiwa, Yuji Ito
Abstract:
In recent years, a reconstruction project for sewer pipelines has been progressing in Japan with the aim of renewing old sewer culverts. However, it is difficult to secure a sufficient base area for shafts in an urban area because many streets are narrow with a complex layout. As a result, construction in such urban areas is generally very demanding. In urban areas, there is a strong requirement for a safe, reliable and economical construction method that does not disturb the public’s daily life and urban activities. With this in mind, we developed a new construction method called the 'shield switching type micro-tunneling method' which integrates the micro-tunneling method and shield method. In this method, pipeline is constructed first for sections that are gently curved or straight using the economical micro-tunneling method, and then the method is switched to the shield method for sections with a sharp curve or a series of curves without establishing an intermediate shaft. This paper provides the information, features and construction examples of this newly developed method.Keywords: micro-tunneling method, secondary lining applied RC segment, sharp curve, shield method, switching type
Procedia PDF Downloads 40618979 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.Keywords: power system, transient stability, critical trajectory method, energy function method
Procedia PDF Downloads 38618978 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs
Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu
Abstract:
This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency
Procedia PDF Downloads 33718977 Development of 3D Particle Method for Calculating Large Deformation of Soils
Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee
Abstract:
In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.Keywords: particle method, large deformation, soil column, confined compressive stress
Procedia PDF Downloads 57318976 The Implementation of Secton Method for Finding the Root of Interpolation Function
Authors: Nur Rokhman
Abstract:
A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.Keywords: Secton method, interpolation, non linear function, numerical solution
Procedia PDF Downloads 37918975 Ductility Spectrum Method for the Design and Verification of Structures
Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour
Abstract:
This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.Keywords: seismic demand, capacity, inelastic spectra, design and structure
Procedia PDF Downloads 39718974 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method
Authors: Hadi Rouhi Belvirdi
Abstract:
The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.Keywords: top-down method, bottom-up method, underground structure, construction method
Procedia PDF Downloads 1518973 Stating Best Commercialization Method: An Unanswered Question from Scholars and Practitioners
Authors: Saheed A. Gbadegeshin
Abstract:
Commercialization method is a means to make inventions available at the market for final consumption. It is described as an important tool for keeping business enterprises sustainable and improving national economic growth. Thus, there are several scholarly publications on it, either presenting or testing different methods for commercialization. However, young entrepreneurs, technologists and scientists would like to know the best method to commercialize their innovations. Then, this question arises: What is the best commercialization method? To answer the question, a systematic literature review was conducted, and practitioners were interviewed. The literary results revealed that there are many methods but new methods are needed to improve commercialization especially during these times of economic crisis and political uncertainty. Similarly, the empirical results showed there are several methods, but the best method is the one that reduces costs, reduces the risks associated with uncertainty, and improves customer participation and acceptability. Therefore, it was concluded that new commercialization method is essential for today's high technologies and a method was presented.Keywords: commercialization method, technology, knowledge, intellectual property, innovation, invention
Procedia PDF Downloads 34318972 Critical Comparison of Two Teaching Methods: The Grammar Translation Method and the Communicative Teaching Method
Authors: Aicha Zohbie
Abstract:
The purpose of this paper is to critically compare two teaching methods: the communicative method and the grammar-translation method. The paper presents the importance of language awareness as an approach to teaching and learning language and some challenges that language teachers face. In addition, the paper strives to determine whether the adoption of communicative teaching methods or the grammar teaching method would be more effective to teach a language. A variety of features are considered for comparing the two methods: the purpose of each method, techniques used, teachers’ and students’ roles, the use of L1, the skills that are emphasized, the correction of students’ errors, and the students’ assessments. Finally, the paper includes suggestions and recommendations for implementing an approach that best meets the students’ needs in a classroom.Keywords: language teaching methods, language awareness, communicative method grammar translation method, advantages and disadvantages
Procedia PDF Downloads 15318971 Numerical Iteration Method to Find New Formulas for Nonlinear Equations
Authors: Kholod Mohammad Abualnaja
Abstract:
A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms
Procedia PDF Downloads 54518970 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments
Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady
Abstract:
In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.Keywords: cable ampacity, finite element method, underground cable, thermal rating
Procedia PDF Downloads 37918969 Multistage Adomian Decomposition Method for Solving Linear and Non-Linear Stiff System of Ordinary Differential Equations
Authors: M. S. H. Chowdhury, Ishak Hashim
Abstract:
In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the classical Adomian decomposition method (ADM) and the multi-stage Adomian decomposition method (MADM). The MADM is a technique adapted from the standard Adomian decomposition method (ADM) where standard ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The MADM is tested for several examples. Comparisons with an explicit Runge-Kutta-type method (RK) and the classical ADM demonstrate the limitations of ADM and promising capability of the MADM for solving stiff initial value problems (IVPs).Keywords: stiff system of ODEs, Runge-Kutta Type Method, Adomian decomposition method, Multistage ADM
Procedia PDF Downloads 43818968 A Method for Measurement and Evaluation of Drape of Textiles
Authors: L. Fridrichova, R. Knížek, V. Bajzík
Abstract:
Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric.Keywords: drape, drape shape, automated drapemeter, fabric
Procedia PDF Downloads 657