Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 80

Search results for: steepest descent

80 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman


Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence

Procedia PDF Downloads 428
79 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty


In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 332
78 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen


In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 57
77 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong


Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 63
76 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima


Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module

Procedia PDF Downloads 278
75 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms

Authors: Belloufi Mohammed, Sellami Badreddine


This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.

Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search

Procedia PDF Downloads 290
74 Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance

Authors: Pengfan Wu, Xiaoan Chen, Ye He, Tianchi Chen


This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly.

Keywords: unpowered exoskeleton, stair descent, knee compliant joint, energy redistribution

Procedia PDF Downloads 60
73 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim


Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 212
72 Transverse Testicular Ectopia: A Case Report with Review of Literature

Authors: Rida Ahmad, Areej S. Habib, Sohail A. Dogar, Saqib H. Qazi


Transverse testicular ectopia is a rare congenital disorder involving mal descent and mal-positioning of the testes, reported in the medical literature about 300 times. Many theories attempt to explain the failure of the testes to migrate to their correct location. While the age at presentation can vary; most cases present in early adolescents or late adulthood. It is often an incidental discovery made during an operative intervention, most commonly during hernia exploration. It can be isolated or present with a plethora of anomalies. We present the case of a 2-year-old male with transverse testicular ectopia who presented with vague abdominal pain. He was managed successfully with the Modified Ombredanne procedure and good outcome 6 months after the procedure.

Keywords: cryptorchidism, persistent Mullerian duct syndrome, transverse testicular ectopia, testicular mal-descent

Procedia PDF Downloads 119
71 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi


Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 364
70 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization

Authors: Belloufi Mohammed, Sellami Badreddine


Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.

Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons

Procedia PDF Downloads 314
69 An Accelerated Stochastic Gradient Method with Momentum

Authors: Liang Liu, Xiaopeng Luo


In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.

Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum

Procedia PDF Downloads 79
68 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction

Authors: Sol Girouard, Zona Kostic


A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.

Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training

Procedia PDF Downloads 201
67 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed


The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 59
66 The Benefits of Mountain Climbing in the Physical Well-Being of Young People

Authors: Zylfi Shehu, Rozeta Shatku


The aim of this study is the identification of the goods and the consequences it brings up the mountain climbing to the youth, how mountain climbing influences in physical activity and the health of young people. Taken to study 37 young people aged 18-30 years, 25 males and 12 females. The selection was made at random and voluntary. Subjects were not professionals but amateurs climbing in the mountain. They were informed and instructed for the test to be carried out. The ascent was made in January 2016 in the Mount of Gjallica in Kukës, Albania, the height of the mountain is 2489 m above sea level. Backpack for each subject weighing 32 kg. Time of ascent, attitude and descent was 6 days. In 22 males, 2 of them did not afford the ascent on the first day and went back. Of the 12 women, 5 of them withdrew on the first day. During the descent on day six, 20 males 7 of them had minor injuries, three with serious injuries. While a total of 7 women, 4 of them had minor injuries and one with serious injuries. Most of the men and women who deal with physical activity throughout life faced the light and were not injured, and the rest that were not dealt with physical activity were more injured. Lack of experience and knowledge was one of the causes of injuries. The subjects had anxiety all the time, uncertainty and fear of avalanches of snow and difficult terrain.

Keywords: climbing, physical activity, young people

Procedia PDF Downloads 240
65 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment

Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino


Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.

Keywords: EDL, Mars, mission, SPS, TPS

Procedia PDF Downloads 87
64 Geographies of Blackness: An Exploration of the Subaltern Public Spheres of the African Diaspora in European Cities

Authors: Teju N. Adisa-Farrar


In European cities, social, political and cultural geographies of blackness exist. Organizations create spaces to discuss, express, and expose the realities of young people of African descent creating an Afropean lifestyle with transnational affiliations. Focusing on black and brown spaces produced by and for the young people of African descent in Vienna and Brussels, it became clear a multidisciplinary approach would be necessary. Using Cultural Studies frameworks along with Communications Theories on Black Public Spheres and Social-Geography, a basis was created for exploring the creative, political, and economic responses of young people who are apart of the historically (and contemporary) oppressed and excluded groups of the African Diaspora. Through this intrinsic study, it became apparent that spaces created and reclaimed by young people of the African Diaspora were more inclusive and democratic than other spaces. The organizations studied have used city life as the platform to express their struggles and celebrations of their multicultural identity; clearly using historical, global black and Pan-African movements as the basis for local adaptation of an African Diaspora identity.

Keywords: African diaspora, black public sphere, identity, spaces, geographies

Procedia PDF Downloads 213
63 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization

Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao


Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.

Keywords: minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX

Procedia PDF Downloads 198
62 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh


It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 104
61 A Case Study on the Effectiveness of the Physical Therapy Home Exercise Program for Pelvic Floor Muscle Training in a Middle-Aged Female Post- Surgical Repair of Stage III Pelvic Organ Prolapse

Authors: Iwona Kasior


Purpose: Pelvic organ prolapse is the descent of pelvic organs into the vaginal opening. Currently, few trials have been conducted to determine the influence of pelvic floor muscle training in decreasing stage or symptoms associated with pelvic organ prolapse. The purpose of this case study is to determine whether pelvic floor muscle training can decrease the stage of pelvic organ prolapse and related symptoms. Case Presentation: This is the case of a 55-year-old female; recently diagnosed with midline cystocele, stage three. She has undergone corrective surgery that failed. She has now resorted to managing the condition with a home exercise regimen of voluntary pelvic floor muscle contractions, topical vaginal crème prescribed by her gynecologist, and slight lifestyle modifications. Methods: The patient was treated by a physical therapist for evaluation, vaginal exam, and educated in the ‘knack’ maneuver, lifestyle modifications, and proper technique of performing pelvic floor muscle contractions. The subject continued with a home exercise program with a specific regimen of pelvic floor muscle contractions and topical vaginal crème. Outcome: As determined by her physical therapist and the subject, her pelvic floor muscle strength had increased following the pelvic floor muscle training regimen and the use of the ‘knack’ maneuver. The subject reported a small decrease in the size of bulging prolapse and related symptoms of dryness, odor, vaginal discomfort, and the sensation of descent. Conclusion: Pelvic floor muscle training helped to lessen the degree of the prolapse, but not significantly enough to decrease the diagnosed stage.

Keywords: Kegel exercises, pelvic floor, pelvic organ prolapse, physical therapy

Procedia PDF Downloads 113
60 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur

Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh


Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.

Keywords: hanging, channelling, blast furnace, coke

Procedia PDF Downloads 123
59 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Vaninsky


The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models

Procedia PDF Downloads 250
58 Gradient Overdrive: Avoiding Negative Randomness Effects in Stochastic Gradient Descent (SGD)

Authors: Filip Strzałka Urszula Markowska-Kaczmar


This work aims to develop a new method that maximally reduces the phenomenon of scrabbling weights in modern Deep Neural Network architectures without losing positive generalization characteristics of SGD. The goal of the conducted experiments is to tune the proposed method called Gradient Overdrive (GO) and try to prove its effectiveness by comparison to similar state-of-the-art methods. The method aims at achieving steeper learning curves in the same training regimes. Though the method should mark by being computationally efficient, neither the experimental implementation ensures to be optimal nor is it in the scope of this work to optimize the technique in the domain of computation time.

Keywords: neural network training, SGD, MLP, convolutional network

Procedia PDF Downloads 25
57 A New Family of Globally Convergent Conjugate Gradient Methods

Authors: B. Sellami, Y. Laskri, M. Belloufi


Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.

Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization

Procedia PDF Downloads 328
56 “Those Are the Things that We Need to be Talking About”: The Impact of Learning About the History of Racial Oppression during Ghana Study Abroad

Authors: Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert


This article examines the impact of learning about the history of racial oppression on U.S. university students who participated in a Ghana study abroad which involved visiting the former slave dungeons. Relying on ethnographic observations, individual interviews, and written journals of 27 students (predominantly White and Latino/a and social work majors), we identified four themes: (1) the suffering and resilience of African and African descent people; (2) ‘it’s still happening today’; (3) ‘you don’t learn about that in school’; and (4) remembrance, equity, and healing.

Keywords: racial oppression, anti-racism pedagogy, student learning, social work education, study abroad

Procedia PDF Downloads 14
55 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad


The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 276
54 The Subtle Influence of Hindu Doctrines on Film Industry: A Case Study of Movie Avatar

Authors: Cemil Kutlutürk


Hindu culture and religious doctrines such as caste, reincarnation, yoga, nirvana have always proved a popular theme for the film industry. The analyzing of these motifs in the movies with a scientific approach enables to individuals either to comprehend the messages and deep meanings of films or to understand others’ religious beliefs systems and daily lives in a properly way. The primary aim of this study is to handle the subtle influence of Hindu doctrines on cinema industry by focusing on James Cameron’s film, Avatar and its relationship with Hindu concept of avatara by referring to original Hindu sacred texts where this doctrine is basically clarified. The Sanskrit word avatara means to come down or to descend. Although an avatara is commonly considered as an appearance of any deity on earth, the term refers the Vishnu’s descending on earth. When the movie avatar and avatara doctrine are compared, various similarities have noteworthy revealed. Firstly in the movie, Jake is chosen by Eywa to protect Pandora from evils. Similarly in the movie, avatar is born when there is a rise of jealousy and unrighteousness. The same concept is found in avatara doctrine. According to this belief whenever righteousness (dharma) wanes and unrighteousness (adharma) increases God incarnates himself as an avatara. In Hindu tradition, the ten avataras of Vishnu are the most popular. This standard list of ten avataras includes the Fish, the Tortoise, the Boar, the Man-Lion (Narasimha), the Dwarf, Parasurama, Rama, Krishna, the Buddha and Kalki. In the movie the avatar has tail, eyes, nose, ear which is similar to Narasimha (half man-half lion) avatara. On the other hand use of bow and arrow by Navis in the film, evokes us Rama avatara whose basic gun is same. Navis fly on a dragon like bird called Ikra and ride a horse-like quadruped animal. The vehicle for transformation of the avatar in the movie is also resemblance with the idea of Garuda, the great mythical bird, which is used by Vishnu in Hindu mythology. In addition, the last avatara, Kalki, will be seen on a white horse according to Puranas. The basic difference is that for Hinduism avatara means descent of a God, yet in the movie, a human being named Jake Sully, is manifested as humanoid of another planet, this is called as avatar. While in the movie the avatar manifests himself in another planet, Pandora, in Hinduism avataras descent on this world. On the other hand, in Hindu scriptures, there are many avataras and they are categorized according to their functions and attributes. These sides of avatara doctrine cannot be also seen clearly in the film. Even though there are some differences between each other, the main hypothesis of this study is that the general character of the movie is similar to avatara doctrine. In the movie instead of emphasizing on a specific avatara, qualities of different Vishnu avataras have been properly used.

Keywords: film industry, Hinduism, incarnation, James Cameron, movie avatar

Procedia PDF Downloads 286
53 Analysis of Hydraulic Velocity in Fishway Using CCHE2D Model

Authors: Amir Abbas Kamanbedast, Masood Mohammad Shafipor, Amir Ghotboddin


Fish way is a structure that in generally using to migrate to the place where they are spawned and is made near the spillway. Preventing fish spawning or migrating to their original place by fishway structures can affect their lives in the river or even erase one access to intended environment. The main objective of these structures is establishing a safe path for fish migration. In the present study first the hydraulic specifications of Hamidieh diversion dam were assessed and then it is problems were evaluated. In this study the dimensions of the fish way, including velocity of pools, were evaluated by CCHE2D software. Then by change slope in this structure streamlines like velocity in the pools were measured. For calibration can be use measuring local velocities in some pools. The information can be seen the fishway width of 0.3 m has minimum rate of descent in the total number of structures (pools and overflow).

Keywords: fishway, velocity, Hamidieh-Diversion Dam, CCHE2D model

Procedia PDF Downloads 406
52 Inverse Dynamics of the Mould Base of Blow Molding Machines

Authors: Vigen Arakelian


This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.

Keywords: design, mechanisms, dynamics, blow-molding machines

Procedia PDF Downloads 85
51 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi


The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices

Procedia PDF Downloads 117