Search results for: mineral contents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2010

Search results for: mineral contents

30 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution

Authors: Abderrazak Bannari

Abstract:

Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.

Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing

Procedia PDF Downloads 203
29 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress

Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz

Abstract:

World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.

Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity

Procedia PDF Downloads 196
28 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 153
27 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 328
26 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 232
25 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 314
24 Digital Geological Map of the Loki Crystalline Massif (The Caucasus) and Its Multi-Informative Explanatory Note

Authors: Irakli Gamkrelidze, David Shengelia, Giorgi Chichinadze, Tamara Tsutsunava, Giorgi Beridze, Tamara Tsamalashvili, Ketevan Tedliashvili, Irakli Javakhishvili

Abstract:

The Caucasus is situated between the Eurasian and Africa-Arabian plates and represents a component of the Mediterranean (Alpine-Himalayan) collision belt. The Loki crystalline massif crops out within one of the terranes of the Caucasus – Baiburt-Sevanian terrane. By the end of 2018, a digital geological map (1:50 000) of the Loki massif was compiled. The presented map is of great importance for the region since there is no large-scale geological map which reflects the present standards of the geological study of the massif up to the last time. The existing State Geological Map of the Loki massif is very outdated. A new map drown by using GIS (Geographic Information System) technology is loaded with multi-informative details that include: specified contours of geological units and separate tectonic scales, key mineral assemblages and facies of metamorphism, temperature conditions of metamorphism, ages of metamorphism events and the massif rocks, genetic-geodynamic types of magmatic rocks. Explanatory note, attached to the map includes the large specter of scientific information. It contains characterization of the geological setting, composition and petrogenetic and geodynamic models of the massif formation. To create a geological map of the Loki crystalline massif, appropriate methodologies were applied: a sampling of rocks, GIS technology-based mapping of geological units, microscopic description of the material, composition analysis of rocks, microprobe analysis of minerals and a new interpretation of obtained data. To prepare a digital version of the map the appropriated activities were held including the creation of a common database. Finally, the design was created that includes the elaboration of legend and the final visualization of the map. The results of the study presented in the explanatory note are given below. The autochthonous gneissose quartz diorites of normal alkalinity and sub-alkaline gabbro-diorites included in them belong to different phases of magmatism. They represent “igneous” granites corresponding to mixed mantle-crustal type granites. Four tectonic plates of the allochthonous metamorphic complex–Lower Gorastskali, Sapharlo–Lok-Jandari, Moshevani, and Lower Gorastskali differ from each other by structure and degree of metamorphism. The initial rocks of these plates are formed in different geodynamic conditions and during the Early Bretonian orogeny while overthrusting due to tectonic compression they form a thick tectonic sheet. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The protolith of the ophiolitic complex basites corresponds to the tholeiitic series of basalts. The Sapharlo–Lok-Jandari overthrust sheet is metapelites, metamorphosed in conditions of greenschist facies of regional metamorphism. The regional metamorphism of Moshevani overthrust sheet crystalline schists quartzites corresponds to a range from greenschist to hornfels facies. The “mélange” is built of rock fragments and blocks of above-mentioned overthrust sheets. Sub-alkaline and normal alkaline post-metamorphic granites of the Loki crystalline massif belong to “igneous” and rarely to “sialic” and “anorogenic” types of granites.

Keywords: digital geological map, 1:50 000 scale, crystalline massif, the caucasus

Procedia PDF Downloads 145
23 Illness-Related PTSD Among Type 1 Diabetes Patients

Authors: Omer Zvi Shaked, Amir Tirosh

Abstract:

Type 1 Diabetes (T1DM) is an incurable chronic illness with no known preventive measures. Excess to insulin therapy can lead to hypoglycemia with neuro-glycogenic symptoms such as shakiness, nausea, sweating, irritability, fatigue, excessive thirst or hunger, weakness, seizure, and coma. Severe Hypoglycemia (SH) is also considered a most aversive event since it may put patients at risk for injury and death, which matches the criteria of a traumatic event. SH has a ranging prevalence of 20%, which makes it a primary medical Issue. One of the results of SH is an intense emotional fear reaction resembling the form of post-traumatic stress symptoms (PTS), causing many patients to avoid insulin therapy and social activities in order to avoid the possibility of hypoglycemia. As a result, they are at risk for irreversible health deterioration and medical complications. Fear of Hypoglycemia (FOH) is, therefore, a major disturbance for T1DM patients. FOH differs from prevalent post-traumatic stress reactions to other forms of traumatic events since the threat to life continuously exists in the patient's body. That is, it is highly probable that orthodox interventions may not be sufficient for helping patients after SH to regain healthy social function and proper medical treatment. Accordingly, the current presentation will demonstrate the results of a study conducted among T1DM patients after SH. The study was designed in two stages. First, a preliminary qualitative phenomenological study among ten patients after SH was conducted. Analysis revealed that after SH, patients confuse between stress symptoms and Hypoglycemia symptoms, divide life before and after the event, report a constant sense of fear, a loss of freedom, a significant decrease in social functioning, a catastrophic thinking pattern, a dichotomous split between the self and the body, and internalization of illness identity, a loss of internal locus of control, a damaged self-representation, and severe loneliness for never being understood by others. The second stage was a two steps study of intervention among five patients after SH. The first part of the intervention included three months of therapeutic 3rd wave CBT therapy. The contents of the therapeutic process were: acceptance of fear and tolerance to stress; cognitive de-fusion combined with emotional self-regulation; the adoption of an active position relying on personal values; and self-compassion. Then, the intervention included a one-week practical real-time 24/7 support by trained medical personnel, alongside a gradual exposure to increased insulin therapy in a protected environment. The results of the intervention are a decrease in stress symptoms, increased social functioning, increased well-being, and decreased avoidance of medical treatment. The presentation will discuss the unique emotional state of T1DM patients after SH. Then, the presentation will discuss the effectiveness of the intervention for patients with chronic conditions after a traumatic event. The presentation will make evident the unique situation of illness-related PTSD. The presentation will also demonstrate the requirement for multi-professional collaboration between social work and medical care for populations with chronic medical conditions. Limitations of the study and recommendations for further research will be discussed.

Keywords: type 1 diabetes, chronic illness, post-traumatic stress, illness-related PTSD

Procedia PDF Downloads 143
22 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 45
21 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon

Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira

Abstract:

Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.

Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning

Procedia PDF Downloads 34
20 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment

Authors: F. Uriel, M. M. Fernandez Liporace

Abstract:

In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.

Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support

Procedia PDF Downloads 95
19 Effect of Selenium Source on Meat Quality of Bonsmara Bull Calves

Authors: J. van Soest, B. Bruneel, J. Smit, N. Williams, P. Swiegers

Abstract:

Selenium (Se) is an essential trace mineral involved in reducing oxidative stress, enhancing immune status, improving reproduction, and regulating growth. During finishing period, selenium supplementation can be applied to improve meat quality. Dietary selenium can be provided in inorganic or organic forms. Specifically, L-selenomethionine (organic selenium) allows for selenium storage in animal protein which supports the animal during periods of high oxidative stress. The objective of this study was to investigate the effects of synthetically produced, single amino acid, L-selenomethionine (Excential Selenium 4000, Orffa Additives BV) on production parameters, health status, and meat quality of Bonsmara bull calves. 24 calves, 7 months of age, completed a 60-day initial growing period at a commercial feedlot, after which they were transported to research station Rumen-8 (Bethlehem, South-Africa). After a ten-day adaptation period, the bulls were allocated to a control (n=12) or treatment (n=12) group. Each group was divided over 3 pens based on weight. Both groups received Total Mixed Ration supplemented with 5.25 mg Se/head per day. The control group was supplemented with sodium selenite as Se source, whilst the treatment group was supplemented with L-selenomethionine (Excential Selenium 4000, Orffa Additives BV). Animals were limited to 10 kg feed intake per head per day to ensure similar Se intake. Treatment period lasted 1.5 months. A beta-adrenergic agonist was included in the feed for the last 30 days. During the treatment period, average daily gain, average daily feed intake, and feed conversion ratio were recorded. Blood parameters were measured at day 1, day 25, and before slaughter (day 47). After slaughter, carcass weight, dressing percentage, grading, and meat quality (pH, tenderness, colour, odour, purge, proximate analyses, acid detergent fibre, and neutral detergent fibre) were determined. No differences between groups were found in performance. A higher number of animals with cortisol levels below detection limit (27.6 nmol/l) was recorded for the treatment group. Other blood parameters showed no differences. No differences were found regarding carcass weight and dressing percentage. Important parameters of meat quality were significantly improved in the treatment group: instrumental tenderness at 14 days ageing was 2.8 and 3.4 for treatment and control respectively (P=0.010), and a 0.5% decrease in purge (of fresh samples) was shown, 1.5% and 2.0% for treatment group and control respectively (p=0.029). Besides, pH was shown to be numerically reduced in the treatment group. In summary, supplementation with L-selenomethionine as selenium source improved meat quality compared to sodium selenite. Lower instrumental tenderness (Warner Bratzler Shear Force, WBSF) was recorded for the treatment group. This indicates less tough meat and highest consumer satisfaction. Regarding purge, control was just below 2.0%, an important threshold for consumer acceptation. Treatment group scored 0.5% lower for purge than control, indicating higher consumer satisfaction. The lower pH in the treatment group could be an indication of higher glycogen reserves in muscle which could contribute to a reduced risk of Dark Firm Dry carcasses. More animals showed cortisol levels below detection limit in the treatment group, indicating lower levels of stress when animals receive L-selenomethionine.

Keywords: calves, meat quality, nutrition, selenium

Procedia PDF Downloads 150
18 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 247
17 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 110
16 Significant Aspects and Drivers of Germany and Australia's Energy Policy from a Political Economy Perspective

Authors: Sarah Niklas, Lynne Chester, Mark Diesendorf

Abstract:

Geopolitical tensions, climate change and recent movements favouring a transformative shift in institutional power structures have influenced the economics of conventional energy supply for decades. This study takes a multi-dimensional approach to illustrate the potential of renewable energy (RE) technology to provide a pathway to a low-carbon economy driven by ecologically sustainable, independent and socially just energy. This comparative analysis identifies economic, political and social drivers that shaped the adoption of RE policy in two significantly different economies, Germany and Australia, with strong and weak commitments to RE respectively. Two complementary political-economy theories frame the document-based analysis. Régulation Theory, inspired by Marxist ideas and strongly influenced by contemporary economic problems, provides the background to explore the social relationships contributing the adoption of RE within the macro-economy. Varieties of Capitalism theory, a more recently developed micro-economic approach, examines the nature of state-firm relationships. Together these approaches provide a comprehensive lens of analysis. Germany’s energy policy transformed substantially over the second half of the last century. The development is characterised by the coordination of societal, environmental and industrial demands throughout the advancement of capitalist regimes. In the Fordist regime, mass production based on coal drove Germany’s astounding economic recovery during the post-war period. Economic depression and the instability of institutional arrangements necessitated the impulsive seeking of national security and energy independence. During the postwar Flexi-Fordist period, quality-based production, innovation and technology-based competition schemes, particularly with regard to political power structures in and across Europe, favoured the adoption of RE. Innovation, knowledge and education were institutionalized, leading to the legislation of environmental concerns. Lastly the establishment of government-industry-based coordinative programs supported the phase out of nuclear power and the increased adoption of RE during the last decade. Australia’s energy policy is shaped by the country’s richness in mineral resources. Energy policy largely served coal mining, historically and currently one of the most capital-intense industry. Assisted by the macro-economic dimensions of institutional arrangements, social and financial capital is orientated towards the export-led and strongly demand-oriented economy. Here energy policy serves the maintenance of capital accumulation in the mining sector and the emerging Asian economies. The adoption of supportive renewable energy policy would challenge the distinct role of the mining industry within the (neo)-liberal market economy. The state’s protective role of the mining sector has resulted in weak commitment to RE policy and investment uncertainty in the energy sector. Recent developments, driven by strong public support for RE, emphasize the sense of community in urban and rural areas and the emergence of a bottom-up approach to adopt renewables. Thus, political economy frameworks on both the macro-economic (Regulation Theory) and micro-economic (Varieties of Capitalism theory) scales can together explain the strong commitment to RE in Germany vis-à-vis the weak commitment in Australia.

Keywords: political economy, regulation theory, renewable energy, social relationships, energy transitions

Procedia PDF Downloads 355
15 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)

Authors: Khiem M. Nguyen, Ming C. Yang

Abstract:

Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.

Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis

Procedia PDF Downloads 92
14 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 209
13 Moodle-Based E-Learning Course Development for Medical Interpreters

Authors: Naoko Ono, Junko Kato

Abstract:

According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.

Keywords: e-learning, language education, moodle, medical interpreting

Procedia PDF Downloads 332
12 Sampling and Chemical Characterization of Particulate Matter in a Platinum Mine

Authors: Juergen Orasche, Vesta Kohlmeier, George C. Dragan, Gert Jakobi, Patricia Forbes, Ralf Zimmermann

Abstract:

Underground mining poses a difficult environment for both man and machines. At more than 1000 meters underneath the surface of the earth, ores and other mineral resources are still gained by conventional and motorised mining. Adding to the hazards caused by blasting and stone-chipping, the working conditions are best described by the high temperatures of 35-40°C and high humidity, at low air exchange rates. Separate ventilation shafts lead fresh air into a mine and others lead expended air back to the surface. This is essential for humans and machines working deep underground. Nevertheless, mines are widely ramified. Thus the air flow rate at the far end of a tunnel is sensed to be close to zero. In recent years, conventional mining was supplemented by mining with heavy diesel machines. These very flat machines called Load Haul Dump (LHD) vehicles accelerate and ease work in areas favourable for heavy machines. On the other hand, they emit non-filtered diesel exhaust, which constitutes an occupational hazard for the miners. Combined with a low air exchange, high humidity and inorganic dust from the mining it leads to 'black smog' underneath the earth. This work focuses on the air quality in mines employing LHDs. Therefore we performed personal sampling (samplers worn by miners during their work), stationary sampling and aethalometer (Microaeth MA200, Aethlabs) measurements in a platinum mine in around 1000 meters under the earth’s surface. We compared areas of high diesel exhaust emission with areas of conventional mining where no diesel machines were operated. For a better assessment of health risks caused by air pollution we applied a separated gas-/particle-sampling tool (or system), with first denuder section collecting intermediate VOCs. These multi-channel silicone rubber denuders are able to trap IVOCs while allowing particles ranged from 10 nm to 1 µm in diameter to be transmitted with an efficiency of nearly 100%. The second section is represented by a quartz fibre filter collecting particles and adsorbed semi-volatile organic compounds (SVOC). The third part is a graphitized carbon black adsorber – collecting the SVOCs that evaporate from the filter. The compounds collected on these three sections were analyzed in our labs with different thermal desorption techniques coupled with gas chromatography and mass spectrometry (GC-MS). VOCs and IVOCs were measured with a Shimadzu Thermal Desorption Unit (TD20, Shimadzu, Japan) coupled to a GCMS-System QP 2010 Ultra with a quadrupole mass spectrometer (Shimadzu). The GC was equipped with a 30m, BP-20 wax column (0.25mm ID, 0.25µm film) from SGE (Australia). Filters were analyzed with In-situ derivatization thermal desorption gas chromatography time-of-flight-mass spectrometry (IDTD-GC-TOF-MS). The IDTD unit is a modified GL sciences Optic 3 system (GL Sciences, Netherlands). The results showed black carbon concentrations measured with the portable aethalometers up to several mg per m³. The organic chemistry was dominated by very high concentrations of alkanes. Typical diesel engine exhaust markers like alkylated polycyclic aromatic hydrocarbons were detected as well as typical lubrication oil markers like hopanes.

Keywords: diesel emission, personal sampling, aethalometer, mining

Procedia PDF Downloads 123
11 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 142
10 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan

Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen

Abstract:

In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.

Keywords: automation, integration, value, communication

Procedia PDF Downloads 115
9 Gender Mainstreaming at the Institute of Technology Tribhuvan University Nepal: A Collaborative Approach to Architecture and Design Education

Authors: Martina Maria Keitsch, Sangeeta Singh

Abstract:

There has been a growing recognition that sustainable development needs to consider economic, social and environmental aspects including gender. In Nepal, the majority of the population lives in rural areas, and many households do not have access to electricity. In rural areas, the difficulty of accessing energy is becoming one of the greatest constraints for improving living conditions. This is particularly true for women and children, who spent much time for collecting firewood and cooking and thus are often deprived of time for education, political- and business activities. The poster introduces an education and research project financed by the Norwegian Government. The project runs from 2015-2020 and is a collaboration between the Norwegian University of Science (NTNU) and Technology Institute of Engineering (IOE), Tribhuvan University. It has the title Master program and Research in Energy for Sustainable Social Development Energy for Sustainable Social Development (MSESSD). The project addresses engineering and architecture students and comprises several integral activities towards gender mainstreaming. The following activities are conducted; 1. Creating academic opportunities, 2. Updating administrative personnel on strategies to effectively include gender issues, 3. Integrating female and male stakeholders in the design process, 4. Sensitizing female and male students for gender issues in energy systems. The project aims to enable students to design end-user-friendly solutions which can, for example, save time that can be used to generate and enhance income. Relating to gender mainstreaming, design concepts focus on smaller-scale technologies, which female stakeholders can take control of and manage themselves. Creating academic opportunities, we have a 30% female students’ rate in each master student batch in the program with the goal to educate qualified female personnel for academia and policy-making/government. This is a very ambitious target in a Nepalese context. The rate of female students, who completed the MSc program at IOE between 1998 and January 2015 is 10% out of 180 students in total. For recruiting, female students were contacted personally and encouraged to apply for the program. Further, we have established a Master course in gender mainstreaming and energy. On an administrative level, NTNU has hosted a training program for IOE on gender-mainstreaming information and -strategies for academic education. Integrating female and male stakeholders, local women groups such as, e.g., mothers group are actively included in research and education for example in planning, decision-making, and management to establish clean energy solutions. The project meets women’s needs not just practically by providing better technology, but also strategically by providing solutions that enhance their social and economic decision-making authority. Sensitizing the students for gender issues in energy systems, the project makes it mandatory to discuss gender mainstreaming based on the case studies in the Master thesis. All activities will be discussed in detail comprising an overview of MSESSD, the gender mainstreaming master course contents’, and case studies where energy solutions were co-designed with men and women as lead-users and/or entrepreneurs. The goal is to motivate educators to develop similar forms of transnational gender collaboration.

Keywords: knowledge generation on gender mainstreaming, sensitizing students, stakeholder inclusion, education strategies for design and architecture in gender mainstreaming, facilitation for cooperation

Procedia PDF Downloads 98
8 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 196
7 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India

Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra

Abstract:

Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.

Keywords: eco-agriculture, quality, root crops, healthy soil, yield

Procedia PDF Downloads 309
6 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide

Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar

Abstract:

Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.

Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite

Procedia PDF Downloads 258
5 Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy

Authors: Jana Chakrabarti, Madhushrita Das, Ankhi Haldar, Roshni Chatterjee, Tanmoy Dey, Pubali Dhar

Abstract:

High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India’s developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30±0.67%), carbohydrate (8.01±0.38%) and reducing sugar (4.75±0.07%), but less amount of fat (1.02±0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow’s milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds.

Keywords: functional food, functional properties, Lamellidens marginalis, protein hydrolysate

Procedia PDF Downloads 390
4 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture

Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy

Abstract:

Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.

Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin

Procedia PDF Downloads 204
3 Preparation and Struggle of Two Generations for Future Care: A Study of Intergenerational Care Planning among Mainland Immigrant Ageing Families in Hong Kong

Authors: Xue Bai, Ranran He, Chang Liu

Abstract:

Care planning before the onset of intensive care needs can benefit older adults’ psychological well-being and increases families’ ability to manage caregiving crises and cope with care transitions. Effective care planning requires collaborative ‘team-work’ in families. However, future care planning has not been substantially examined in intergenerational or family contexts, let alone among immigrant families who have to face particular challenges in parental caregiving. From a family systems perspective, this study intends to explore the extent, processes, and contents of intergenerational care planning of Mainland immigrant ageing families in Hong Kong and to examine the intergenerational congruence and discrepancies in the care planning process. Adopting a qualitative research design, semi-structured in-depth interviews were conducted with 17 adult child-older parent pairs and another 33 adult children. In total, 50 adult children who migrated to Hong Kong after the age of 18 with more than three years’ work experience in Hong Kong had at least one parent aged over 55 years old who was not a Hong Kong resident and considered his/herself as the primary caregiver of the parent were recruited. Seventeen ageing parents of the recruited adult children were invited for dyadic interviews. Scarcity of caregiving resources in the context of cross-border migration, intergenerational discrepancies in care planning stages, both generations’ struggle and ambivalence toward filial care, intergenerational transmission of care values, and facilitating role of accumulated family capital in care preparation were primary themes concluded from participants’ narratives. Compared with ageing parents, immigrant adult children generally displayed lower levels of care planning. Although with a strong awareness of parents’ future care needs, few adult children were found engaged in concrete planning activities. This is largely due to their uncertainties toward future life and career, huge work and living pressure, the relatively good health status of their parents, and restrictions of public welfare policies in the receiving society. By contrast, children’s cross-border migration encouraged ageing parents to have early and clear preparation for future care. Ageing parents mostly expressed low filial care expectations when realizing the scarcity of family caregiving resources in the cross-border context. Even though they prefer in-person support from children, most of them prepare themselves for independent ageing to prioritize the next generation’s needs or choose to utilize paid services, welfare systems, friend networks, or extended family networks in their sending society. Adult children were frequently found caught in the dilemma of desiring to provide high quality and in-person support for their parents but lacking sufficient resources. Notably, a salient pattern of intergenerational transmission in terms of family and care values and ideal care arrangement emerged from intergenerational care preparation. Moreover, the positive role of accumulated family capital generated by a reunion in care preparation and joint decision-making were also identified. The findings of the current study will enhance professionals’ and service providers’ awareness of intergenerational care planning in cross-border migration contexts, inform services to alleviate unpreparedness for elderly care and intergenerational discrepancies concerning care arrangements and broaden family services to encompass intergenerational care planning interventions. Acknowledgment: This study is supported by a General Research Grant from the Research Grants Council of the HKSAR, China (Project Number: 15603818).

Keywords: intergenerational care planning, mainland immigrants in Hong Kong, migrant family, older adults

Procedia PDF Downloads 90
2 Non Pharmacological Approach to IBS (Irritable Bowel Syndrome)

Authors: A. Aceranti, L. Moretti, S. Vernocchi, M. Colorato, P. Caristia

Abstract:

Irritable bowel syndrome (IBS) is the association between abdominal pain, abdominal distension and intestinal dysfunction for recurring periods. About 10% of the world's population has IBS at any given time in their life, and about 200 people per 100,000 receive an initial diagnosis of IBS each year. Persistent pain is recognized as one of the most pervasive and challenging problems facing the medical community today. Persistent pain is considered more as a complex pathophysiological, diagnostic and therapeutic situation rather than as a persistent symptom. The low efficiency of conventional drug treatments has led many doctors to become interested in the non-drug alternative treatment of IBS, especially for more severe cases. Patients and providers are often dissatisfied with the available drug remedies and often seek complementary and alternative medicine (CAM), a unique and holistic approach to treatment that is not a typical component of conventional medicine. Osteopathic treatment may be of specific interest in patients with IBS. Osteopathy is a complementary health approach that emphasizes the role of the musculoskeletal system in health and promotes optimal function of the body's tissues using a variety of manual techniques to improve body function. Osteopathy has been defined as a patient-centered health discipline based on the principles of interrelation between body structure and function, the body's innate capacity for self-healing and the adoption of a whole person health approach. mainly by practicing manual processing. Studies reported that osteopathic manual treatment (OMT) reduced IBS symptoms, such as abdominal pain, constipation, diarrhea, and improved general well-being. The focus in the treatment of IBS with osteopathy has gone beyond simple spinal alignment, to directly address the abnormal physiology of the body using a series of direct and indirect techniques. The topic of this study was chosen for different reasons: due to the large number of people involved who suffer from this disorder and for the dysfunction itself, since nowadays there is still little clarity about the best type of treatment and, above all, to its origin. The visceral component in the osteopathic field is still a world to be discovered, although it is related to a large part of patient series, it has contents that affect numerous disciplines and this makes it an enigma yet to be solved. The study originated in the didactic practice where the curiosity of a topic is marked that, even today, no one is able to explain and, above all, cure definitively. The main purpose of this study is to try to create a good basis on the osteopathic discipline for subsequent studies that can be exhaustive in the best possible way, resolving some doubts about which treatment modality can be used with more relevance. The path was decided to structure it in such a way that 3 types of osteopathic treatment are used on 3 groups of people who will be selected after completing a questionnaire, which will deem them suitable for the study. They will, in fact, be divided into three groups where: - the first group was given a visceral osteopathic treatment. - The second group was given a manual osteopathic treatment of neurological stimulation. - The third group received a placebo treatment. At the end of the treatment, questionnaires will be re-proposed respectively one week after the session and one month after the treatment from which any data will be collected that will demonstrate the effectiveness or otherwise of the treatment received. The sample of 50 patients examined underwent an oral interview to evaluate the inclusion and exclusion criteria to participate in the study. Of the 50 patients questioned, 17 people who underwent different osteopathic techniques were eligible for the study. Comparing the data related to the first assessment of tenderness and frequency of symptoms with the data related to the first follow-up shows a significant improvement in the score assigned to the different questions, especially in the neurogenic and visceral groups. We are aware of the fact that it is a study performed on a small sample of patients, and this is a penalizing factor. We remain, however, convinced that having obtained good results in terms of subjective improvement in the quality of life of the subjects, it would be very interesting to re-propose the study on a larger sample and fill the gaps.

Keywords: IBS, osteopathy, colon, intestinal inflammation

Procedia PDF Downloads 74
1 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 148