Search results for: irrigation management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9596

Search results for: irrigation management

9536 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas

Authors: Alireza Nejadmohammad Namaghi

Abstract:

Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.

Keywords: mulch, cotton, arid land management, irrigation systems

Procedia PDF Downloads 44
9535 Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria

Authors: Ejoh Nonso Francis

Abstract:

: Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond.

Keywords: irrigation scheduling, sustainable agriculture, soil moisture sensors, weather data, water use efficiency, crop productivity, nigeria, onitsha, anambra state, technology-based irrigation scheduling, water resources, environmental degradation, crop water requirements, overwatering, water waste, farming systems, scalability

Procedia PDF Downloads 49
9534 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production

Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani

Abstract:

The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.

Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.

Procedia PDF Downloads 89
9533 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran

Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan

Abstract:

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio

Procedia PDF Downloads 389
9532 Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively.

Keywords: ground-water, soil salinity, drip irrigation, wetted zone, wetted periphery, cost benefit analysis

Procedia PDF Downloads 122
9531 Effect of Different Irrigation Intervals on Protein and Gel Production of Aloe Vera (Aloe Barbadensis M.) in Iran

Authors: Seyed Mohammad Hosein Al Omrani Nejad, Ali Rezvani Aghdam

Abstract:

This study was done in order to evaluation different irrigation intervals on amount of protein, and gel production in Aloe vera, a traditional medicinal plant. Plants was plnted in Greenhouse and irrigated according to Accumulative Pan Evaporation(APE). The treatments were included 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mm APE which has been showed W1,W2, W3, W4, W5, W6, W7, W8,W9 and W10 respectively.The amount of protein and gel production was measured seperately. Results showed that highest protein and fresh weight of gel obtained plants which irrigated W6 and W7 respectively. According to these results can recomend which if plant irrigatedwhen APE reached 120 and 140 mm by Class A Evaporation Pan method gel production and protein would besuitable in north of khozestan province in limited irrigation conditions.

Keywords: irrigation, protein, gel, aloe vera, Iran

Procedia PDF Downloads 357
9530 Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria

Authors: O. I. Ojo, W. B. R. Graham, I. W. Pishiria

Abstract:

The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L.

Keywords: ground water quality, irrigation, characteristics, soil drainage, salinity, Fadama

Procedia PDF Downloads 256
9529 A Model Approach of Good Practice Based on the Project Management Body of Knowledge® Guide in the Project Owner

Authors: Claudia Marcela Munoz Gonzalez, Diego Fernando Hernandez Losada, Hugo Alberto Herrera Fonseca

Abstract:

The project owner's role in the public-private investment consists of controlling and verifying the correct execution of the project's objectives and resources. Likewise, it is a discipline little explored in the academic field, whereby this work wishes to contribute with a model of good practices based on the project management methodology proposed by the Project Management Body of Knowledge® Guide. In the same way, highlight what are the controls that an integral project owner should take into account in its exercise and application, through the stages in which its contract runs. This proposal aims to structure its practice and integrate its functions according to a project management methodology. In addition, these practices will be applied in a case study of projects in the agricultural sector, particularly in the construction of irrigation district in Cundinamarca, Colombia.

Keywords: controls, construction of irrigation district, PMBOK®, project owner

Procedia PDF Downloads 427
9528 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity

Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz

Abstract:

The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.

Keywords: irrigation, matric potential, rice, water scarcity

Procedia PDF Downloads 175
9527 Crop Price Variation and Water Saving Technologies in Iran

Authors: Saeed Yazdani, Shahrbanoo Bagheri, Sepideh Nikravesh

Abstract:

Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. Adoption of modern irrigation technology is considered to be a key of increasing the efficiency of water used in agriculture. Policy makers have implemented several ways to induce the adoption of new irrigation technology. The empirical studies show that farmers are reluctant to utilize the use of new irrigation methods. This study aims to assess factors affecting on farmer’s decision on the application of water saving technologies with emphasize on crop price variation and water sources. A Logit model was employed to examine the impact of different variables on use of water saving technology. The required data gathered from a sample of 204 farmers in the year 2012. The results indicate that different variables such as crop price variability, water supply source, high-value crops, farm size, income, education, membership in cooperatives have a positive effect and variables such as age and number of plots have a negative impact on the probability of adopting modern water saving technologies.

Keywords: irrigation, water, water saving technology, scarcity

Procedia PDF Downloads 196
9526 Evalutaion of the Surface Water Quality Using the Water Quality Index and Discriminant Analysis Method

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

Water resources present to the public order of the world a very important problem for the protection and management of water quality given the complexity of water quality data sets. In this study, the water quality index (WQI) and irrigation water quality index (IWQI) were calculated in order to evaluate the surface water quality for drinking and irrigation purposes based on nine hydrochemical parameters. In order to separate the variables that are the most responsible for the spatial differentiation, the discriminant analysis (DA) was applied. The results show that the surface water quality for drinking is poor quality and very poor quality based on WQI values, however, the values of IWQI reflect that this water is acceptable for irrigation with a restriction for sensitive plants. Consequently, the discriminant analysis DA method has shown that the following parameters pH, potassium, chloride, sulfate, and bicarbonate are significant discrimination between the different stations with the spatial variation of the surface water quality, therefore, the results obtained in this study provide very useful information to decision-makers

Keywords: surface water quality, drinking and irrigation purposes, water quality index, discriminant analysis

Procedia PDF Downloads 45
9525 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 82
9524 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana

Authors: Tamekloe Michael Kossivi, Kenichi Matsui

Abstract:

Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.

Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation

Procedia PDF Downloads 86
9523 Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Dao Chu

Abstract:

The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources.

Keywords: heavy metals, stream water, irrigation, industry

Procedia PDF Downloads 375
9522 Smart Automated Furrow Irrigation: A Preliminary Evaluation

Authors: Jasim Uddin, Rod Smith, Malcolm Gillies

Abstract:

Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.

Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control

Procedia PDF Downloads 420
9521 Quantity, Quality and Water Productivity of Mulberry Leaf Influenced by Different Methods, Levels of Irrigation and Mulching in Eastern Dry Zone of Karnataka, India

Authors: Chengalappa Seenappa, Narayanappa Devkumar, Narayanappa Nagaraja

Abstract:

Mulberry leaf is the major economic component in sericulture and quality of leaf produced per unit area has a direct effect on quality of cocoon. Among all the agronomical inputs, irrigation water has highest impact on mulberry leaf quantity and quality. The water productivity in sericulture in the country is inadequate and inefficient though India has the largest irrigated area. There is a need of proper irrigation methods and conservation practices to ensure efficiency and economy in water use. Hence, this field experiment was conducted at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India during 2013 and 2014 to know the quantity, quality and water productivity of mulberry influenced by different methods, levels of irrigation and mulching in Eastern Dry Zone (EDZ) of Karnataka, India. The results revealed that the mulberry leaf quantity, quality and water productivity were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield, chlorophyll, relative water, protein content and water productivity (42857 kg ha-1 yr-1, 8.54, 65.80%, 22.27% and 364.41 kg hacm-1, respectively) than surface drip at 1.0 CPE (38809 kg ha-1 yr-1, 7.34, 62.76%, 17.75% and 264 10 kg hacm-1, respectively) and micro spray jet at 1.0 CPE (39931 kg ha-1 yr-1, 7.96, 63.50%, 19.00%, 35617 kg ha-1 yr-1 and 271.83 kg hacm-1, respectively). Mulching treatment recorded maximum leaf yield, chlorophyll, relative water, protein content and water productivity (38035 kg ha-1 yr-1, 7.12, 62.11%, 16.14% and 330 kg hacm-1, respectively) compared to without mulching. These results clearly indicated that subsurface drip irrigation at lower level of irrigation (0.8 CPE) and mulching increased the quantity, quality and water productivity of mulberry leaf than surface drip and micro spray jet irrigation at higher level of irrigation (1.0 CPE) by saving 20 per cent of water. Therefore, in the coming days subsurface drip irrigation in mulberry cultivation may be more appropriate to realise higher yield, quality and water productivity in EDZ of Karnataka, India.

Keywords: subsurface drip irrigation, mulching, water productivity, mulberry

Procedia PDF Downloads 239
9520 The Impact of Small-Scale Irrigation on the Income of Rural Households and Determinants of Its Adoption: Evidence from Dehana Woreda, Ethiopia

Authors: Wondmnew Derebe Yohannis

Abstract:

Farming irrigation plays a crucial role in rural development strategies, impacting both annual household income and livelihood. This research aims to evaluate the factors influencing irrigation participation and assess the impact of small-scale irrigation on rural households' annual income. The study collected data from 287 farmers in the Dahana district of northern Ethiopia. The research investigates the driving forces behind farmers' decisions to adopt small-scale irrigation and its effect on annual income gain. The findings reveal that several factors positively influence the probability of adoption, including access to credit, cultivated land size, livestock holding, extension contact, and the education level of the household head. Conversely, the distance to local markets and water schemes negatively affects the likelihood of adoption. To understand the differences in annual income between farm households that adopted irrigation and those that did not, a simultaneous equations model with endogenous switching regression is estimated. This accounts for the heterogeneity in the adoption decision and unobservable characteristics of farmers and their farms. The analysis compares the expected income gain under actual and counterfactual scenarios, considering whether the farm household adopted irrigation or not. The study reveals that the group of farm households that adopted irrigation has distinct characteristics compared to those that did not adopt it. Furthermore, the research demonstrates that the adoption of irrigation practices leads to an increase in annual income. Interestingly, the impact of small-scale irrigation on annual income is greater for the farm households that actually adopted irrigation compared to those in the counterfactual scenario where they did not adopt. Based on the findings, the researcher concludes that small-scale irrigation is a practical solution for meeting household financial needs in the study area. It is recommended that investments in small-scale irrigation continue to further improve the livelihoods of rural farming communities by enhancing annual income gains.

Keywords: small-scale irrigation, income, rural farm households, endogenous switching regression, user, non-user

Procedia PDF Downloads 22
9519 Aiding Water Flow in Irrigation Technology with a Pedal Operated Manual Pump

Authors: Isaac Ali Kwasu, Aje Tokan

Abstract:

The research was set to design a manually pedal operated water pump to aid water flow technology for irrigation activities for rural farmers. The development was carried out first by a prototype design to guide the fabrication. All items needed for the fabrication were used for the final product. The machine is operated manually by pedaling. This engages all the parts of the machine into active motion. Energy is generated and transfer finally to the pumping unit which is wired with plastic pipes. The pumping unit which is wired with PVC pipes, both linked to the water source and the reservoir respectively. The (rpm) revolution per minute of the machine is approximated at 3130 depending on the pedaling speed of the user. The machine does not have gear arrangement yet can give high (rpm) for effective performance. The pumping performance of the machine is 125 liters in one minute and can sustain small scale irrigation farming activities and to supplement water management system to sustain crop growth.

Keywords: pump, development, manual, flywheel, sprocket, pulley, machine, v belt, chain, hub, pipe, steel, mechanism, irrigation, prototype, fabrication

Procedia PDF Downloads 177
9518 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 466
9517 Potentials and Challenges of Implementing Participatory Irrigation Management, Tanzania

Authors: Pilly Joseph Kagosi

Abstract:

The study aims at assessing challenges observed during implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation and literature review. Data collected from questionnaire was analyzed using SPSS while PRA data was analyzed with the help of local communities during PRA exercise. Data from other methods were analyzed using content analysis. The study revealed that PIM approach has contribution in improved food security at household level due to involvement of communities in water management activities and decision making which enhanced availability of water for irrigation and increased crop production. However there were challenges observed during implementation of the approach including; minimum participation of beneficiaries in decision making during planning and designing stages, meaning inadequate devolution of power among scheme owners; Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that, the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.

Keywords: potentials of implementing participatory approach, challenges of participatory approach, irrigation management, Tanzania

Procedia PDF Downloads 276
9516 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 313
9515 Evaluation of the Quality Water Irrigation in Region of Lioua (Biskra), Algeria

Authors: F. Hiouani, M. Henouda, A. Masmoudi, M. Rechachi

Abstract:

The objective of this study was to evaluate the quality of irrigation water of some underground water resources in the region of Lioua (Biskra, Algéria). Analysis of cations (Ca++, Mg++, Na+, K+), anions (Cl-, SO4--, CO3--, HCO3-, NO3-), pH and electrical conductivity (EC) of ten water samples taken during March 2015. The resulted showed that water samples are designated salty and very salty. On the other hand, average SAR values show that there is no alkalinity risk of soil. According to Riverside diagram water samples are grouped into five classes (C3-S1, C4-S1, C4-S3, C5-S2 and C5-S3).

Keywords: groundwater, irrigation, quality, lioua biskra

Procedia PDF Downloads 282
9514 Use of Treated Municipal Wastewater on Artichoke Crop

Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino

Abstract:

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling

Procedia PDF Downloads 399
9513 Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area

Authors: G. K. Madhu, S. Bhaskar, M. S. Dinesh, R. Manii, C. A. Srinivasamurthy

Abstract:

A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments.

Keywords: sugar mill effluent, sugarcane, irrigation, cane yield

Procedia PDF Downloads 303
9512 Analysis of Factors Used by Farmers to Manage Risk: A Case Study on Italian Farms

Authors: A. Pontrandolfi, G. Enjolras, F. Capitanio

Abstract:

The study analyses the strategies Italian farmers use to cope with the risks that face their production. We specifically explore the potential and the limitations of the economic tools for climatic risk management in agriculture of the Common Agricultural Policy 2014-2020, that foresees contributions for economic tools for risk management, in relation to farms’ needs, exposure and vulnerability of agricultural areas to climatic risk. We consider at the farm level approaches to hedge risks in terms of the use of technical tools (agricultural practices, pesticides, fertilizers, irrigation) and economic/financial instruments (insurances, etc.). We develop cross-sectional and longitudinal analyses as well as analyses of correlation that underline the main differences between the way farms adapt their structure and management towards risk. The results show a preference for technical tools, despite the presence of important public aids on economic tools such as insurances. Therefore, there is a strong need for a more effective and integrated risk management policy scheme. Synergies between economic tools and risk reduction actions of a more technical, structural and management nature (production diversification, irrigation infrastructures, technological and management innovations and formation-information-consultancy, etc.) are emphasized.

Keywords: agriculture and climate change, climatic risk management, insurance schemes, farmers' approaches to risk management

Procedia PDF Downloads 307
9511 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania

Authors: Pilly Joseph Kagosi

Abstract:

The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.

Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas

Procedia PDF Downloads 301
9510 Water Use Efficiency of Sunflower Genotypes Under Drip Irrigation

Authors: Adel M. Mahmoud

Abstract:

This Investigation was conducted to determine the productivity and water use efficiency for new sunflower genotypes. Ten sunflower genotypes were evaluated under drip irrigation using two treatments of. Results indicate that decreasing the amount of irrigation water from 1500 to 1130 mm/hectar significantly reduced all studied traits. Mutation (M1-63) surpassed all the other one genotypes in seed yield and WUE. Lines which gave the highest yield of the seed have water use efficiency under drought conditions higher than water use efficiency under normal irrigation. The lowest depression in seed yield due to drought conditions has been registered for Line 20, Line M1-63 and Sakha 53 genotypes (11 , 18 and 16 %, respectively). Genotypes (Line 20 , Line M1-63 and Sakha 53) are more tolerant to drought than others and we can used its in breeding program to develop sunflower hybrids suitable for cultivation under drought condition.

Keywords: sunflower genotypes, water use efficiency, mutation, inbred lines

Procedia PDF Downloads 350
9509 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran

Authors: Mohsen Najarchi

Abstract:

This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.

Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration

Procedia PDF Downloads 369
9508 Effects of Irrigation Applications during Post-Anthesis Period on Flower Development and Pyrethrin Accumulation in Pyrethrum

Authors: Dilnee D. Suraweera, Tim Groom, Brian Chung, Brendan Bond, Andrew Schipp, Marc E. Nicolas

Abstract:

Pyrethrum (Tanacetum cinerariifolium) is a perennial plant belongs to family Asteraceae. This is cultivated commercially for extraction of natural insecticide pyrethrins, which accumulates in their flower head achenes. Approximately 94% of the pyrethrins are produced within secretory ducts and trichomes of achenes of the mature pyrethrum flower. This is the most widely used botanical insecticide in the world and Australia is the current largest pyrethrum producer in the world. Rainfall in pyrethrum growing regions in Australia during pyrethrum flowering period, in late spring and early summer is significantly less. Due to lack of adequate soil moisture and under elevated temperature conditions during post-anthesis period, resulting in yield reductions. Therefore, understanding of yield responses of pyrethrum to irrigation is important for Pyrethrum as a commercial crop. Irrigation management has been identified as a key area of pyrethrum crop management strategies that could be manipulated to increase yield. Pyrethrum is a comparatively drought tolerant plant and it has some ability to survive in dry conditions due to deep rooting. But in dry areas and in dry seasons, the crop cannot reach to its full yield potential without adequate soil moisture. Therefore, irrigation is essential during the flowering period prevent crop water stress and maximise yield. Irrigation during the water deficit period results in an overall increased rate of water uptake and growth by the plant which is essential to achieve the maximum yield benefits from commercial crops. The effects of irrigation treatments applied at post-anthesis period on pyrethrum yield responses were studied in two irrigation methods. This was conducted in a first harvest commercial pyrethrum field in Waubra, Victoria, during 2012/2013 season. Drip irrigation and overhead sprinkler irrigation treatments applied during whole flowering period were compared with ‘rainfed’ treatment in relation to flower yield and pyrethrin yield responses. The results of this experiment showed that the application of 180mm of irrigation throughout the post-anthesis period, from early flowering stages to physiological maturity under drip irrigation treatment increased pyrethrin concentration by 32%, which combined with the 95 % increase in the flower yield to give a total pyrethrin yield increase of 157%, compared to the ‘rainfed’ treatment. In contrast to that overhead sprinkler irrigation treatment increased pyrethrin concentration by 19%, which combined with the 60 % increase in the flower yield to give a total pyrethrin yield increase of 91%, compared to the ‘rainfed’ treatment. Irrigation treatments applied throughout the post-anthesis period significantly increased flower yield as a result of enhancement of number of flowers and flower size. Irrigation provides adequate soil moisture for flower development in pyrethrum which slows the rate of flower development and increases the length of the flowering period, resulting in a delayed crop harvest (11 days) compared to the ‘rainfed’ treatment. Overall, irrigation has a major impact on pyrethrin accumulation which increases the rate and duration of pyrethrin accumulation resulting in higher pyrethrin yield per flower at physiological maturity. The findings of this study will be important for future yield predictions and to develop advanced agronomic strategies to maximise pyrethrin yield in pyrethrum.

Keywords: achene, drip irrigation, overhead irrigation, pyrethrin

Procedia PDF Downloads 378
9507 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 119