Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20898

Search results for: discriminant analysis

20898 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García


In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 320
20897 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios

Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão


Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.

Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario

Procedia PDF Downloads 57
20896 A Study on the Performance of 2-PC-D Classification Model

Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli


There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.

Keywords: classification model, discriminant function, principle component analysis, variable reduction

Procedia PDF Downloads 242
20895 Measuring Multi-Class Linear Classifier for Image Classification

Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang


A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.

Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis

Procedia PDF Downloads 401
20894 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele


This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 354
20893 Alcohol and Tobacco Influencing Prevalence of Hypertension among 15-54 Old Indian Men: An Application of Discriminant Analysis Using National Family Health Survey, 2015-16

Authors: Chander Shekhar, Jeetendra Yadav, Shaziya Allarakha


Hypertension has been described as an 'iceberg disease' as those who suffered are ignored and hence usually seek healthcare services at a very late stage. It is estimated that more than 2 million Indians are suffering from hypertensive heart disease that contributed to above 0.13 million deaths in 2016. The paper study aims to know the prevalence of Hypertension in India and its variation by socioeconomic backgrounds and to find out risk factors discriminating hypertension with special emphasis on consumption of tobacco and alcohol among men aged 15-54 years in India. The paper uses NFHS (2015-16) data. The paper used binary logistic regression and discriminant analysis to find significant predictors and discriminants of interest. The prevalence of hypertension was 16.5% in the study population. The results suggest that consumption of alcohol and tobacco are significant discriminant characteristics in carrying hypertension irrespective of what socioeconomic background characteristic he possesses.

Keywords: hypertention, alcohol, tobacco, discriminant

Procedia PDF Downloads 45
20892 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen


Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors

Procedia PDF Downloads 330
20891 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik


Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 250
20890 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha


Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 374
20889 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba


In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 338
20888 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong


The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 37
20887 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia

Authors: A. B. Robert, Adam Pramadia, Calvin Andika


The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.

Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone

Procedia PDF Downloads 454
20886 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat


Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 396
20885 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function

Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi


To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.

Keywords: melon, discriminant analysis, genetic components, yield, selection

Procedia PDF Downloads 245
20884 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand


Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 421
20883 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou


Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 150
20882 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

Authors: Esra Polat


Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.

Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis

Procedia PDF Downloads 179
20881 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar


Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: share of electricity generation, k-means clustering, discriminant, CO2 emission

Procedia PDF Downloads 280
20880 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops

Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan


In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.

Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis

Procedia PDF Downloads 257
20879 Assessing Factors That Constitute Talent in the Islamic Financial Institutions among Bank Officers

Authors: Zairani Zainol, Zulkiflee Daud


This study employed 86 respondents representing bank officers of Bank XYX (one of the full-fledged Islamic banks in Malaysia) in the northern region of Malaysia to assess the factors that constitute talent in the Islamic financial industries. To test the discriminant factors for talent among bank officers, a factor analysis was performed. The KMO, Bartlett and MSA tests were executed as the prerequisite before performing the factor analysis. The discriminant factors for talent were extracted via eigenvalues and rotated component matrixes. The results show that five factors, namely (1) self-motivation, (2) leadership, (3) teamwork, (4) interpersonal skills, and (5) creativity/innovation constitute talent in the Islamic financial industries. It is hoped that this study could offer guidelines to education providers, specifically those that conduct the Islamic finance and banking program, as to the areas of emphasis for students before graduating. For the Islamic financial institutions, this study is also vital since they could tackle the areas that need to be improved in managing their talents.

Keywords: talent, Islamic financial industries, talent development, bank’s officers

Procedia PDF Downloads 310
20878 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar


In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 282
20877 Diet and Exercise Intervention and Bio–Atherogenic Markers for Obesity Classes of Black South Africans with Type 2 Diabetes Mellitus Using Discriminant Analysis

Authors: Oladele V. Adeniyi, B. Longo-Mbenza, Daniel T. Goon


Background: Lipids are often low or in the normal ranges and controversial in the atherogenesis among Black Africans. The effect of the severity of obesity on some traditional and novel cardiovascular disease risk factors is unclear before and after a diet and exercise maintenance programme among obese black South Africans with type 2 diabetes mellitus (T2DM). Therefore, this study aimed to identify the risk factors to discriminate obesity classes among patients with T2DM before and after a diet and exercise programme. Methods: This interventional cohort of Black South Africans with T2DM was followed by a very – low calorie diet and exercise programme in Mthatha, between August and November 2013. Gender, age, and the levels of body mass index (BMI), blood pressure, monthly income, daily frequency of meals, blood random plasma glucose (RPG), serum creatinine, total cholesterol (TC), triglycerides (TG), LDL –C, HDL – C, Non-HDL, ratios of TC/HDL, TG/HDL, and LDL/HDL were recorded. Univariate analysis (ANOVA) and multivariate discriminant analysis were performed to separate obesity classes: normal weight (BMI = 18.5 – 24.9 kg/m2), overweight (BMI = 25 – 29.9 kg/m2), obesity Class 1 (BMI = 30 – 34.9 kg/m2), obesity Class 2 (BMI = 35 – 39.9 kg/m2), and obesity Class 3 (BMI ≥ 40 kg/m2). Results: At the baseline (1st Month September), all 327 patients were overweight/obese: 19.6% overweight, 42.8% obese class 1, 22.3% obese class 2, and 15.3% obese class 3. In discriminant analysis, only systolic blood pressure (SBP with positive association) and LDL/HDL ratio (negative association) significantly separated increasing obesity classes. At the post – evaluation (3rd Month November), out of all 327 patients, 19.9%, 19.3%, 37.6%, 15%, and 8.3% had normal weight, overweight, obesity class 1, obesity class 2, and obesity class 3, respectively. There was a significant negative association between serum creatinine and increase in BMI. In discriminant analysis, only age (positive association), SBP (U – shaped relationship), monthly income (inverted U – shaped association), daily frequency of meals (positive association), and LDL/HDL ratio (positive association) classified significantly increasing obesity classes. Conclusion: There is an epidemic of diabesity (Obesity + T2DM) in this Black South Africans with some weight loss. Further studies are needed to understand positive or negative linear correlations and paradoxical curvilinear correlations between these markers and increase in BMI among black South African T2DM patients.

Keywords: atherogenic dyslipidaemia, dietary interventions, obesity, south africans

Procedia PDF Downloads 266
20876 Living Arrangement of Elderly in India: An Exploration from BKPAI Study

Authors: Jitendra Gouda, Chander Shekhar


With the addition of 27 million elderly in India in past census decade from 2001 to 2011, it is imperative to work towards exploring the issues and concerns of this increasingly aged population. In Indian society, the elderly person is assumed to be looked after by the family members, especially by children but with changing economy, society, and lifestyle, this assumption demands examining. This paper is an attempt to explore the living arrangement of the elderly and their perceptions about this in India. The findings are based on the BKPAI dataset of 2011, which was conducted in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal. The result shows that three fourth of elderly lives with their children. Having son and staying with children is positively associated among elderly. More than 40 percent as compared to 37 percent of elderly feels comfortable living with sons and daughters respectively. Half of elderly across sexes viewed that sons are the best person to live with. The result of discriminant analysis suggest that health status and living arrangement of elderly are the good discriminators to ensure their importance in the family.

Keywords: discriminant analysis, elderly, India, living arrangment

Procedia PDF Downloads 228
20875 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita


Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: data science, non-negative matrix factorization, missing data, quality of services

Procedia PDF Downloads 42
20874 Sex Estimation Using Cervical Measurements of Molar Teeth in an Iranian Archaeological Population

Authors: Seyedeh Mandan Kazzazi, Elena Kranioti


In the field of human osteology, sex estimation is an important step in developing biological profile. There are a number of methods that can be used to estimate the sex of human remains varying from visual assessments to metric analysis of sexually dimorphic traits. Teeth are one of the most durable physical elements in human body that can be used for this purpose. The present study investigated the utility of cervical measurements for sex estimation through discriminant analysis. The permanent molar teeth of 75 skeletons (28 females and 52 males) from Hasanlu site in North-western Iran were studied. Cervical mesiodistal and buccolingual measurements were taken from both maxillary and mandibular first and second molars. Discriminant analysis was used to evaluate the accuracy of each diameter in assessing sex. The results showed that males had statistically larger teeth than females for maxillary and mandibular molars and both measurements (P < 0.05). The range of classification rate was from (75.7% to 85.5%) for the original and cross-validated data. The most dimorphic teeth were maxillary and mandibular second molars providing 85.5% and 83.3% correct classification rate respectively. The data generated from the present study suggested that cervical mesiodistal and buccolingual measurements of the molar teeth can be useful and reliable for sex estimation in Iranian archaeological populations.

Keywords: cervical measurements, Hasanlu, premolars, sex estimation

Procedia PDF Downloads 234
20873 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules

Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju


As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.

Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis

Procedia PDF Downloads 547
20872 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani


Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 237
20871 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728

Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili


In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.

Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field

Procedia PDF Downloads 89
20870 Psychometric Properties of the Secondary School Stressor Questionnaire among Adolescents at Five Secondary Schools

Authors: Muhamad Saiful Bahri Yusoff


This study aimed to evaluate the construct, convergent, and discriminant validity of the Secondary School Stressor Questionnaire (3SQ) as well as to evaluate its internal consistency among adolescents in Malaysian secondary schools. A cross-sectional study was conducted on 700 secondary school students in five secondary schools. Stratified random sampling was used to select schools and participants. The confirmatory factor analysis was performed by AMOS to examine construct, convergent, and discriminant validity. The reliability analysis was performed by SPSS to determine internal consistency. The results showed that the original six-factor model with 44 items failed to achieve acceptable values of the goodness of fit indices, suggesting poor model fit. The new five-factor model of 3SQ with 22 items demonstrated acceptable level of goodness of fit indices to signify a model fit. The overall Cronbach’s alpha value for the new version 3SQ was 0.93, while the five constructs ranged from 0.68 to 0.94. The composite reliability values of each construct ranged between 0.68 and 0.93, indicating satisfactory to high level of convergent validity. Our study did not support the construct validity of the original version of 3SQ. We found the new version 3SQ showed more convincing evidence of validity and reliability to measure stressors of adolescents. Continued research is needed to verify and maximize the psychometric credentials of 3SQ across countries.

Keywords: stressors, adolescents, secondary school students, 3SQ, psychometric properties

Procedia PDF Downloads 279
20869 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira


Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 106