Search results for: inorganic farming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1035

Search results for: inorganic farming

225 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS

Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc

Abstract:

Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.

Keywords: GIS, livestock, LULC, remote sensing, suitable lands

Procedia PDF Downloads 263
224 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 119
223 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 496
222 A Review of Farmer Participation in Information and Communication Technology through Mobile Banking and Mobile Marketing in Rural Agricultural Systems

Authors: J. Cadby, K. Miyazawa

Abstract:

Information and Communication Technology (ICT) has been widely adopted into the agricultural landscape with advancements of mobile connectivity and data accessibility. In developed nations, mobile-technology is well integrated into marketing transactions, and also plays a crucial role in making data-driven decisions on-farm. In developing nations, mobile banking and access to agricultural extension services allow for informed decision-making and smoother transactions. In addition, the availability of updated and readily available market and climate data provides a negotiation platform, reducing economic risks for farmers worldwide. The total usage of mobile technology has risen over the past 20 years, and almost three-quarters of the world’s population subscribes to mobile technology. This study reviewed mobile technology integration into agricultural systems in developing and developed nations. Data from secondary sources were collected and investigated. The objectives of the study include a review of the success of mobile banking transactions in developing nations, and a review of application and SMS based services for direct marketing in both developed and developing nations. Rural farmers in developing countries with access to diverse m-banking options experienced increased access to farm investment resources with the use of mobile banking technology. Rural farmers involved in perishable crop production were also more likely to benefit from mobile platform sales participation. ICT programs reached through mobile application and SMS increased access to agricultural extension materials and marketing tools for demographics that faced literacy-challenges and isolated markets. As mobile technology becomes more ubiquitous in the global agricultural system, training and market opportunities to facilitate mobile usage in developing agricultural systems are necessary. Digital skills training programs are necessary in order to improve equal global adoption of ICT in agriculture.

Keywords: market participation, mobile banking, mobile technology, rural farming

Procedia PDF Downloads 222
221 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 127
220 Understanding the First Mental Breakdown from the Families’ Perspective Through Metaphors

Authors: Eli Buchbinder

Abstract:

Introduction. Language is the basis to our experience as human being. We use language in describing our experiences and construct meaning and narratives from experiences. Metaphors are a valuable linguistic tool commonly use. Metaphors link two domains that are ordinarily not related. Metaphors achieve simultaneously multi-level integration: abstract and concrete, rational and imaginative, familiar and the unfamiliar, conscious and preconscious/unconscious. As such, metaphors epistemological and ontological tool that are important in social work in every field and domain. Goals and Methods The presentation’s aim is to validate the value of metaphors through the first psychiatric breakdown is a traumatic for families. The presentation is based on two pooled qualitative studies. The first study focused on 12 spouses: 7 women and 5 men, between the ages of 22 and 57, regarding their experiences and meanings of the first psychiatric hospitalization of their partners diagnosed with affective disorders. The second study focused on 10 parents, between the ages of 47 and 62, regarding their experiences and meanings following their child's first psychotic breakdown during young adulthood. Results Two types of major metaphors evolved from the interviews in farming the trauma of the first mental breakdown. The first mode - orientation (spatial) metaphors, reflect symbolic expression of the loss of a secure base, represented in the physical environment, e.g., describing hospitalization as "falling into an abyss." The second mode- ontological metaphors, reflect how parents and spouses present their traumatic experiences of hospitalization in terms of discrete, powerful and coherent entities, e.g., describing the first hospitalization as "swimming against the tide." The two metaphors modes reflect the embodiment of the unpredictability, being mired in distress, shock, intense pain and the experience the collapse of continuity on the life course and cuts off the experience of control. Conclusions Metaphors are important and powerful guide in assessing individuals and families’ phenomenological reality. As such, metaphors are useful for understanding and orientated therapeutic intervening, in the studies above, with the first psychiatric hospitalization experienced, as well as in others social workers’ interventions.

Keywords: first mental breakdown, metaphors, family perspective, qualitative research

Procedia PDF Downloads 45
219 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems

Authors: Samuel O. Akande

Abstract:

The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.

Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability

Procedia PDF Downloads 167
218 Assessing the Impact of Heatwaves on Intertidal Mudflat Colonized by an Exotic Mussel

Authors: Marie Fouet, Olivier Maire, Cécile Masse, Hugues Blanchet, Salomé Coignard, Nicolas Lavesque, Guillaume Bernard

Abstract:

Exacerbated by global change, extreme climatic events such as atmospheric and marine heat waves may interact with the spread of non-indigenous species and their associated impacts on marine ecosystems. Since the 1970’s, the introduction of non-indigenous species due to oyster exchanges has been numerous. Among them, the Asian date mussel Arcuatula senhousia has colonized a large number of ecosystems worldwide (e.g., California, New Zealand, Italy). In these places, A.senhousia led to important habitat modifications in the benthic compartment through physical, biological, and biogeochemical effects associated with the development of dense mussel populations. In Arcachon Bay (France), a coastal lagoon of the French Atlantic and hotspot of oyster farming, abundances of A. senhousia recently increased, following a lag time of ca. 20 years since the first record of the species in 2002. Here, we addressed the potential effects of the interaction between A. senhousia invasion and heatwave intensity on ecosystem functioning within an intertidal mudflat. More precisely, two realistic intensities (“High” and “Severe”) of combined marine and atmospheric heatwaves have been simulated in an experimental tidal mesocosm system onto which naturally varying densities of A. senhousia and associated benthic communities were exposed in sediment cores collected in situ. Following a six-day exposure, community-scale responses were assessed by measuring benthic metabolism (oxygen and nutrient fluxes) in each core. Results show that besides significantly enhanced benthic metabolism with increasing heatwave intensity, mussel density clearly mediated the magnitude of the community-scale response, thereby highlighting the importance of understanding the interactive effects of environmental stressors co-occurring with non-indigenous species and their dependencies for a better assessment of their impacts.

Keywords: arcuatula senhousia, benthic habitat, ecosystem functioning, heatwaves, metabolism

Procedia PDF Downloads 30
217 Post Harvest Losses and Food Security in Northeast Nigeria What Are the Key Challenges and Concrete Solutions

Authors: Adebola Adedugbe

Abstract:

The challenge of post-harvest losses poses serious threats for food security in Nigeria and the north-eastern part with the country losing about $9billion annually due to postharvest losses in the sector. Post-harvest loss (PHL) is the quantitative and qualitative loss of food in various post-harvest operations. In Nigeria, post-harvest losses (PHL) have been a major challenge to food security and improved farmer’s income. In 2022, the Nigerian government had said over 30 percent of food produced by Nigerian farmers perish during post-harvest. For many in northeast Nigeria, agriculture is the predominant source of livelihood and income. The persistent communal conflicts, flood, decade-old attacks by boko haram and insurgency in this region have disrupted farming activities drastically, with farmlands becoming insecure and inaccessible as communities are forced to abandon ancestral homes, The impact of climate change is also affecting agricultural and fishing activities, leading to shortage of food supplies, acute hunger and loss of livelihood. This has continued to impact negatively on the region and country’s food production and availability making it loose billions of US dollars annually in income in this sector. The root cause of postharvest losses among others in crops, livestock and fisheries are lack of modern post-harvest equipment, chemical and lack of technologies used for combating losses. The 2019 Global Hunger Index showed Nigeria’s case was progressing from a ‘serious to alarming level’. As part of measures to address the problem of post-harvest losses experienced by farmers, the federal government of Nigeria concessioned 17 silos with 6000 metric tonne storage space to private sector to enable farmers to have access to storage facilities. This paper discusses the causes, effects and solutions in handling post-harvest losses and optimize returns on food security in northeast Nigeria.

Keywords: farmers, food security, northeast Nigeria, postharvest loss

Procedia PDF Downloads 50
216 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 320
215 Improving the Supply Chain of Vietnamese Coffee in Buon Me Thuot City, Daklak Province, Vietnam to Achieve Sustainability

Authors: Giang Ngo Tinh Nguyen

Abstract:

Agriculture plays an important role in the economy of Vietnam and coffee is one of most crucial agricultural commodities for exporting but the current farming methods and processing infrastructure could not keep up with the development of the sector. There are many catastrophic impacts on the environment such as deforestation; soil degradation that leads to a decrease in the quality of coffee beans. Therefore, improving supply chain to develop the cultivation of sustainable coffee is one of the most important strategies to boost the coffee industry and create a competitive advantage for Vietnamese coffee in the worldwide market. If all stakeholders in the supply chain network unite together; the sustainable production of coffee will be scaled up and the future of coffee industry will be firmly secured. Buon Ma Thuot city, Dak Lak province is the principal growing region for Vietnamese coffee which accounted for a third of total coffee area in Vietnam. It plays a strategically crucial role in the development of sustainable Vietnamese coffee. Thus, the research is to improve the supply chain of sustainable Vietnamese coffee production in Buon Ma Thuot city, Dak Lak province, Vietnam for the purpose of increasing the yields and export availability as well as helping coffee farmers to be more flexible in an ever-changing market situation. It will help to affirm Vietnamese coffee brand when entering international market; improve the livelihood of farmers and conserve the environment of this area. Besides, after analyzing the data, a logistic regression model is established to explain the relationship between the dependent variable and independent variables to help sustainable coffee organizations forecast the probability of farmer will be having a sustainable certificate with their current situation and help them choose promising candidates to develop sustainable programs. It investigates opinions of local farmers through quantitative surveys. Qualitative interviews are also used to interview local collectors and staff of Trung Nguyen manufacturing company to have an overview of the situation.

Keywords: supply chain management, sustainable agricultural development, sustainable coffee, Vietnamese coffee

Procedia PDF Downloads 420
214 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 90
213 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 178
212 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.

Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse

Procedia PDF Downloads 37
211 Progress in Replacing Antibiotics in Farm Animal Production

Authors: Debabrata Biswas

Abstract:

The current trend in the development of antibiotic resistance by multiple bacterial pathogens has resulted in a troubling loss of effective antibiotic options for human. The emergence of multi-drug-resistant pathogens has necessitated higher dosages and combinations of multiple antibiotics, further exacerbating the problem of antibiotic resistance. Zoonotic bacterial pathogens, such as Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli (such as enterohaemorrhagic E. coli or EHEC), and Listeria are the most common and predominant foodborne enteric infectious agents. It was observed that these pathogens gained/developed their ability to survive in the presence of antibiotics either in farm animal gut or farm environment and researchers believe that therapeutic and sub-therapeutic antibiotic use in farm animal production might play an important role in it. The mechanism of action of antimicrobial components used in farm animal production in genomic interplay in the gut and farm environment, has not been fully characterized. Even the risk of promoting the exchange of mobile genetic elements between microbes specifically pathogens needs to be evaluated in depth, to ensure sustainable farm animal production, safety of our food and to mitigate/limit the enteric infection with multiple antibiotic resistant bacterial pathogens. Due to the consumer’s demand and considering the current emerging situation, many countries are in process to withdraw antibiotic use in farm animal production. Before withdrawing use of the sub-therapeutic antibiotic or restricting the use of therapeutic antibiotics in farm animal production, it is essential to find alternative natural antimicrobials for promoting the growth of farm animal and/or treating animal diseases. Further, it is also necessary to consider whether that compound(s) has the potential to trigger the acquisition or loss of genetic materials in zoonotic and any other bacterial pathogens. Development of alternative therapeutic and sub-therapeutic antimicrobials for farm animal production and food processing and preservation and their effective implementation for sustainable strategies for farm animal production as well as the possible risk for horizontal gene transfer in major enteric pathogens will be focus in the study.

Keywords: food safety, natural antimicrobial, sustainable farming, antibiotic resistance

Procedia PDF Downloads 239
210 Prevalence, Associated Risk Factors, and Bacterial Pathogens in Dairy Camels: A Review

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdelatif, Rabah Siham

Abstract:

Camels play a vital role as multipurpose animals, providing milk meat and serving as a means of transportation. They serve as a financial reserve for pastoralists and hold significant cultural and social value. Camel milk, known for its exceptional nutritional properties, is considered a valuable substitute for human milk. However, udder infections, particularly mastitis, pose significant challenges to camel farming. Clinical and subclinical mastitis can lead to substantial economic losses. Mastitis, especially the subclinical form, is a persistent and prevalent condition affecting milk hygiene and quality in dairy camels. This review offers insights into the prevalence and risk factors associated with subclinical mastitis in camels. The prevalence of subclinical mastitis in dairy camels was found to range from 9.28% to 87.78%. Major pathogens responsible for camel mastitis include Staphylococcus aureus, Coagulase-negative Staphylococcus, Streptococcus agalactiae, Streptococcus dysgalactiae, Escherichia coli, Micrococcus spp, Pasteurella haemolytica and Corynebacterium spp. The study outlines key risk factors contributing to camel mastitis, emphasizing factors such as severe tick infestation, age, stage of lactation, parity, body condition score, skin lesion on the teats or udders, anti-suckling devices, previous history of the udder, conformation of the udder, breed, unhygienic milking practices, production system, amongst others have been reported to be important in the prevalence of subclinical mastitis. This comprehensive overview provides valuable insights into the multifaceted aspects of camel mastitis, encompassing prevalent bacterial pathogens and diverse risk factors. The findings underscore the importance of holistic management practices, emphasizing hygiene, health monitoring, and targeted interventions to ensure the well-being and productivity of camels in various agro-pastoral contexts.

Keywords: bacterial pathogens, camel, mastitis, risk factors

Procedia PDF Downloads 44
209 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 191
208 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 67
207 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 59
206 Surface Display of Lipase on Yarrowia lipolytica Cells

Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova

Abstract:

Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.

Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst

Procedia PDF Downloads 463
205 Understanding Water Governance in the Central Rift Valley of Ethiopia: Zooming into Transparency, Accountability, and Participation

Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos

Abstract:

Water governance considers multi-sector participation beyond the state; and for sustainable use of water resources, appropriate laws, policies, regulations, and institutions needs to be developed and put in place. Water policy, a critical and integral instrument of water governance, guided water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is wealthy of water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. The main aim of the study was to examine the state of water resources governance in the CRV of Ethiopia, and the impact of the Ethiopian Water Resources Management Policy on water governance. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, comprehensive and integrated water management plans, water resources protection, and conservation activities were rarely implemented. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were the primary shortcomings observed. Factors such as over-abstraction, deterioration of buffer zone, and chemical erosion from surrounding farming have contributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder involvement, water distribution strategies, and the application of water governance principles must be given more emphasis.

Keywords: water resources, irrigation, governance, water allocation, governance principles, stakeholders engagement, central rift valley

Procedia PDF Downloads 67
204 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 48
203 Application of Recycled Paper Mill Sludge on the Growth of Khaya Senegalensis and Its Effect on Soil Properties, Nutrients and Heavy Metals

Authors: A. Rosazlin Abdullah, I. Che Fauziah, K. Wan Rasidah, A. B. Rosenani

Abstract:

The paper industry performs an essential role in the global economy of the world. A study was conducted on the paper mill sludge that is applied on the Khaya senegalensis for 1 year planning period at University Agriculture Park, Puchong, Selangor, Malaysia to determine the growth of Khaya senegalensis, soil properties, nutrients concentrations and effects on the status of heavy metals. Paper Mill Sludge (PMS) and composted Recycled Paper Mill Sludge (RPMS) were used with different rates of nitrogen (0, 150, 300 and 600 kg ha-1) at the ratio of 1:1 (Recycled Paper Mill Sludge (RPMS) : Empty Fruit Brunch (EFB). The growth parameters were measured twice a month for 1 year. Plant nutrients and heavy metal uptake were determined. The paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of RPMS with N, significantly contributed to the improvement in plant growth parameters such as plant height (4.24 m), basal diameter (10.30 cm), total plant biomass and improved soil physical and chemical properties. The pH, EC, available P and total C in soil were varied among the treatments during the planting period. The treatments with raw and RPM compost had higher pH values than those applied with inorganic fertilizer and control. Nevertheless, there was no salinity problem recorded during the planting period and available P in soil treated with raw and RPMS compost was higher than the control plots that reflects the mineralization of organic P from the decomposition of pulp sludge. The weight of the free and occluded light fractions of carbon concentration was significantly higher in the soils treated with raw and RPMS compost. The application of raw and composted RPMS gave significantly higher concentration of the heavy metals, but the total concentrations of heavy metals in the soils were below the critical values. Hence, the paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat. The use of paper mill sludge for the soil fertility, shows improvement in land application signifies a unique opportunity to recycle sludge back to the land to alleviate the potential waste management problem.

Keywords: growth, heavy metals, nutrients uptake, production, waste management

Procedia PDF Downloads 344
202 Utilization of Agro-wastes for Biotechnological Production of Edible Mushroom

Authors: Salami Abiodun Olusola, Bankole Faith Ayobami

Abstract:

Agro-wastes are wastes produced from various agricultural activities and include manures, corncob, plant stalks, hulls, leaves, sugarcane bagasse, oil-palm spadix, and rice bran. In farming situation, the agro-waste is often useless and, thus, discarded. Huge quantities of waste resources generated from Nigerian agriculture could be converted to more useful forms of energy, which could contribute to the country’s primary energy needs and reduce problems associated with waste management. Accumulation of agro-wastes may cause health, safety, and environmental concern. However, biotechnological use of agro-waste could enhance food security through its bioconversion to useful renewable energy. Mushrooms are saprophytes which feed by secreting extracellular enzymes, digesting food externally, and absorb the nutrients in net-like hyphae. Therefore, mushrooms could be exploited for bioconversion of the cheap and numerous agro-wastes for providing nutritious food for animals, human and carbon recycling. The study investigated the bioconversion potentials of Pleurotus florida on agro-wastes using a simple and cost-effective biotechnological method. Four agro-wastes; corncobs, oil-palm spadix, corn straw, and sawdust, were composted and used as substrates while the biological efficiency (BE) and the nutritional composition of P. florida grown on the substrates were determined. Pleurotus florida contained 26.28-29.91% protein, 86.90-89.60% moisture, 0.48-0.91% fat, 19.64-22.82% fibre, 31.37-38.17% carbohydrate and 5.18-6.39% ash. The mineral contents ranged from 342-410 mg/100g Calcium, 1009-1133 mg/100g Phosphorus, 17-21 mg/100g Iron, 277-359 mg/100g Sodium, and 2088-2281 mg/100g Potassium. The highest yield and BE were obtained on corncobs (110 g, 55%), followed by oil-palm spadix (76.05 g, 38%), while the least BE was recorded on corn straw substrate (63.12 g, 31.56%). Utilization of the composted substrates yielded nutritional and edible mushrooms. The study presents biotechnological procedure for bioconversion of agro-wastes to edible and nutritious mushroom for efficient agro-wastes’ management, utilization, and recycling.

Keywords: agrowaste, bioconversion, biotechnology, utilization, recycling

Procedia PDF Downloads 47
201 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 423
200 Effect of Climate Variability on Children Health Outcomes in Rural Uganda

Authors: Emily Injete Amondo, Alisher Mirzabaev, Emmanuel Rukundo

Abstract:

Children in rural farming households are often vulnerable to a multitude of risks, including health risks associated with climate change and variability. Cognizant of this, this study empirically traced the relationship between climate variability and nutritional health outcomes in rural children while identifying the cause-and-effect transmission mechanisms. We combined four waves of the rich Uganda National Panel Survey (UNPS), part of the World Bank Living Standards Measurement Studies (LSMS) for the period 2009-2014, with long-term and high-frequency rainfall and temperature datasets. Self-reported drought and flood shock variables were further used in separate regressions for triangulation purposes and robustness checks. Panel fixed effects regressions were applied in the empirical analysis, accounting for a variety of causal identification issues. The results showed significant negative outcomes for children’s anthropometric measurements due to the impacts of moderate and extreme droughts, extreme wet spells, and heatwaves. On the contrary, moderate wet spells were positively linked with nutritional measures. Agricultural production and child diarrhea were the main transmission channels, with heatwaves, droughts, and high rainfall variability negatively affecting crop output. The probability of diarrhea was positively related to increases in temperature and dry spells. Results further revealed that children in households who engaged in ex-ante or anticipatory risk-reducing strategies such as savings had better health outcomes as opposed to those engaged in ex-post coping such as involuntary change of diet. These results highlight the importance of adaptation in smoothing the harmful effects of climate variability on the health of rural households and children in Uganda.

Keywords: extreme weather events, undernutrition, diarrhea, agricultural production, gridded weather data

Procedia PDF Downloads 80
199 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation

Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari

Abstract:

The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.

Keywords: LCA, energy crops, rapeseed, giant reed, poplar

Procedia PDF Downloads 456
198 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 117
197 Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants

Authors: Mohamed Trigui, Fatma Masmoudi, Imen Zouari

Abstract:

Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress.

Keywords: abiotic stress, biofertilizer, biotic stress, compost extract, halobacteria, plant growth promoting (PGP), soil fertility

Procedia PDF Downloads 60
196 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 380