Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 123

Search results for: landfills

123 Influences of Slope Inclination on the Storage Capacity and Stability of Municipal Solid Waste Landfills

Authors: Feten Chihi, Gabriella Varga


The world's most prevalent waste management strategy is landfills. However, it grew more difficult due to a lack of acceptable waste sites. In order to develop larger landfills and extend their lifespan, the purpose of this article is to expand the capacity of the construction by varying the slope's inclination and to examine its effect on the safety factor. The capacity change with tilt is mathematically determined. Using a new probabilistic calculation method that takes into account the heterogeneity of waste layers, the safety factor for various slope angles is examined. To assess the effect of slope variation on the overall safety of landfills, over a hundred computations were performed for each angle. It has been shown that capacity increases significantly with increasing inclination. Passing from 1:3 to 2:3 slope angles and from 1:3 to 1:2 slope angles, the volume of garbage that can be deposited increases by 40 percent and 25 percent, respectively, of the initial volume. The results of the safety factor indicate that slopes of 1:3 and 1:2 are safe when the standard method (homogenous waste) is used for computation. Using the new approaches, a slope with an inclination of 2:3 can be deemed safe, despite the fact that the calculation does not account for the safety-enhancing effect of daily cover layers. Based on the study reported in this paper, the malty layered nonhomogeneous calculating technique better characterizes the safety factor. As it more closely resembles the actual state of landfills, the employed technique allows for more flexibility in design parameters. This work represents a substantial advance in limiting both safe and economical landfills.

Keywords: landfill, municipal solid waste, slope inclination, capacity, safety factor

Procedia PDF Downloads 13
122 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz


Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 118
121 Estimation of Leachate Generation from Municipal Solid Waste Landfills in Selangor

Authors: Tengku Nilam Baizura, Noor Zalina Mahmood


In Malaysia, landfilling is the most preferred method and most of it does not have the proper leachate treatment system which can cause environmental problems. Leachate is the major factor to river water pollution since most landfills are located near the river which is the main water resource for the country. The study aimed to estimate leachate production from landfills in Selangor. A simple mathematical modelling was used for the calculation of annual leachate volume. The estimate of identified landfill area (A) using Google Earth was multiplied by the annual rainfall (R). The product is expressed as volume (V). The data indicate that the leachate production is high even it is fully closed. It is important to design the efficient landfill and proper leachate treatment processes especially for the old/closed landfill. Extensive monitoring will be required to predict future impact.

Keywords: landfill, leachate, municipal solid waste management, waste disposal

Procedia PDF Downloads 272
120 Effect of Preloading on Long-Term Settlement of Closed Landfills: A Numerical Analysis

Authors: Mehrnaz Alibeikloo, Hajar Share Isfahani, Hadi Khabbaz


In recent years, by developing cities and increasing population, reconstructing on closed landfill sites in some regions is unavoidable. Long-term settlement is one of the major concerns associated with reconstruction on landfills after closure. The purpose of this research is evaluating the effect of preloading in various patterns of height and time on long-term settlements of closed landfills. In this regard, five scenarios of surcharge from 1 to 3 m high within 3, 4.5 and 6 months of preloading time have been modeled using PLAXIS 2D software. Moreover, the numerical results have been compared to those obtained from analytical methods, and a good agreement has been achieved. The findings indicate that there is a linear relationship between settlement and surcharge height. Although, long-term settlement decreased by applying a longer and higher preloading, the time of preloading was found to be a more effective factor compared to preloading height.

Keywords: preloading, long-term settlement, landfill, PLAXIS 2D

Procedia PDF Downloads 80
119 A Review of Material and Methods Used in Liner Layers in Various Landfills

Authors: S. Taghvamanesh


Modern landfills are highly engineered containment systems that are designed to reduce the environmental and human health impacts of solid waste (trash). In modern landfills, waste is contained by a liner system. The primary goal of the liner system is to isolate the landfill contents from the environment, thereby protecting the soil and groundwater from pollution caused by the leachate of a landfill. Landfill leachate is the most serious threat to groundwater. Therefore, it is necessary to design a system that prevents the penetration of this dangerous substance into the environment. These layers are made up of two basic elements: clay and geosynthetics. Hydraulic conductivity and flexibility are two desirable properties of these materials. There are three different types of liner systems that will be discussed in this paper. According to available data, the current article analyzed materials and methods for constructing liner layers made of distinct leachates, including various harmful components and heavy metals from all around the world. Also, this study attempted to gather data on leachates for each of the sites discussed. In conclusion, every landfill requires a specific type of liner, which depends on the type of leachate that it produces daily. It should also be emphasized that, based on available data, this article focused on the number of landfills that each country or continent possesses.

Keywords: landfill, liner layer, impervious layer, barrier layer

Procedia PDF Downloads 7
118 Valorization of Local Materials in the Waterproofing Technique of Landfills Site "TLS"

Authors: M. Debieche, F. Kaoua


This paper deals with the use two locals materials abundant in our country, with the view to use a mixture in the waterproofing the landfills. Our interest comes from the necessity to the environment protection, which has recently considerably grown. The site's waterproofing technique, in the landfills sites, is nowadays a very necessary condition to protect the environment, which requires the use of appropriate materials. To this end, an optimal mixture ensuring good performance in terms of hydraulic conductivity, durability and shear strength, mixtures based of sand at different concentrations of sodium bentonite, at compact state are prepared and studied. This study showed that a low permeability of mixture (sand / bentonite) can be achieved 6% of sodium bentonite. This mixture confers also good mechanical behavior, expressed by the recorded, reduction of friction (φ) and the increase of the cohesion (C). Thus, the selected formulation represents an optimal mixture for waterproofing systems. It guarantees an economical and ecological advantages.

Keywords: hydraulic conductivity, sand, sodium bentonite, sustainability

Procedia PDF Downloads 213
117 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti


Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 347
116 Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun


Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill.

Keywords: heterogeneous characteristics, leachate levels, saturated-unsaturated seepage, seepage field, slope stability

Procedia PDF Downloads 119
115 Redefining Urban Landfills – Transformation of a Sanitary Landfill in Indian Cities

Authors: N. L. Divya Gayatri


In India, over 377 million urban people generate 62 million tons of municipal solid waste per annum. Forty-three million tons are collected, 11.9 million are treated and 31 million tons is dumped in landfill sites. The study aims to have an overall understanding of the working and functioning of a sanitary landfill from the siting to the closure stage and identifying various landscape design techniques that can be implemented in a landfill site and come up with a set of guidelines by analyzing the existing policies and guidelines pertaining to landfills. Constituents of municipal solid waste, methods of landfilling, issues, impacts, Mitigation strategies, Landscape design strategies, design approaches towards a landfill, infrastructure requirements, end-use opportunities have been discussed. The objective is to study the ecological and environmental degradation prevention methods, compare various techniques in remediation, study issues in landfill sites in India, analyze scope and opportunities and explore various landscape design strategies. The understanding of the function of landfills with respect to Municipal solid waste and landscaping is conveyed through this study. The study is limited to Landscape design factors in landfill design guidelines and policies mentioned with regard to the issues and impacts specific to the Indian context.

Keywords: sanitary landfill landscaping, environmental impact, municipal solid waste, guidelines, landscape design strategies, landscape design approaches

Procedia PDF Downloads 70
114 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed


Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type

Procedia PDF Downloads 213
113 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia


Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 50
112 Recycling of Sewage Sludge Ash (SSA) as Construction Material

Authors: Z. Chen, C. S. Poon


In Hong Kong, about 1,000 tonnes of sewage sludge were produced every day in 2014 representing a major fraction of the total solid municipal waste. Traditionally, sewage sludge is disposed of at landfills. This disposal method causes environmental issues and uses up precious space in landfills which are becoming saturated one by one. To tackle the disposal problem, Hong Kong government has just built a sewage sludge incinerator. Through incineration the volume of waste can be reduced up to 90% by converting sewage sludge into ash. Whilst sewage sludge ash (SSA) still needs to be disposed of at landfills, research has been conducted at the Hong Kong Polytechnic University on using SSA to substitute cement for the production of construction materials. Results demonstrated that SSA contained many open and isolated pores and thus can reduce the cement dilution effect resulting in only slight decrease in the flexural and compressive strengths of cement mortar. The incorporation of SSA in cement mortar can be up to 20% of the binder, without too much worry about adverse effect on strength development of mortar. There was some enhancement in strength using ground SSA in comparison to the original SSA. The original SSA shortened the relative initial setting time of cement paste but ground SSA caused slight delay in the setting of cement paste. The research also found that increasing the percentage of SSA lead to decreasing workability of cement mortar with the same water/binder ratio, and ground SSA was beneficial to workability although grinding increased the surface area of SSA. This paper summarizes the major findings of the research.

Keywords: cement replacement, construction material, sewage sludge ash, waste recycling

Procedia PDF Downloads 322
111 Mapping of Textile Waste Generation across the Value Chains Operating in the Textile Industry

Authors: Veena Nair, Srikanth Prakash, Mayuri Wijayasundara


Globally, the textile industry is a key contributor to the generation of solid waste which gets landfilled. Textile waste generation generally occurs in three stages, namely: producer waste, pre-consumer waste, and post-consumer waste. However, the different processes adopted in textile material extraction, manufacturing, and use have their respective impact in terms of the quantity of waste being diverted to landfills. The study is focused on assessing the value chains of the two most common textile fibres: cotton and polyester, catering to a broad categories of apparel products. This study attempts to identify and evaluate the key processes adopted by the textile industry at each of the stages in their value chain in terms of waste generation. The different processes identified in each of the stages in the textile value chains are mapped to their respective contribution in generating fibre waste which eventually gets diverted to landfill. The results of the study are beneficial for the overall industry in terms of improving the traceability of waste in the value chains and the selection of processes and behaviours facilitating the reduction of environmental impacts associated with landfills.

Keywords: textile waste, textile value chains, landfill waste, waste mapping

Procedia PDF Downloads 116
110 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study

Authors: Maria Santana, Jose Estaire


Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.

Keywords: industrial wastes, landfill, leachate tests, stability

Procedia PDF Downloads 118
109 Changing Governance and the Role of People's Involvement in Municipal Solid Waste Management: Study of Two Municipal Corporations in Kerala

Authors: Prathibha Ganesan


This paper discusses discontents of inhabitants in the landfills and its culmination into resistance against centralised waste disposal during the last three decades in Kerala. The study is based on a sample survey of 175 households located in the landfill sites and city limits of two Municipal Corporations viz. Thrissur and Cochin. The study found that waste is dumped in the periphery of the urban area where economically and socially vulnerable people are densely populated. Moreover, landfill sites are unscientifically managed to cause severe socio-economic and health issues to the local people, finally leading to their mobilisation and persistent struggle. The struggles often culminate in the closure of landfills or forced relocation or abandonment of the region by the community. The study concluded that persistent people’s struggles compel the local state to either find alternatives to centralised solid waste management system or use political power to subsume the local resistance. The persistence of the struggles determined the type waste governance adopted by the local governments.

Keywords: solid waste management, municipal corporation, resistance movements, urban, Kerala

Procedia PDF Downloads 187
108 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India

Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma


The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.

Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut

Procedia PDF Downloads 60
107 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo


Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 138
106 Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach

Authors: Angga Pratama Herman, Muhammad Shahbaz, Suzana Yusup


Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study.

Keywords: bottom ash, biomass steam gasification, catalyst, lab scale

Procedia PDF Downloads 220
105 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker


Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 55
104 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic


Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 135
103 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment

Authors: Mazifah Simis, Azahan Awang, Kadir Arifin


The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.

Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception

Procedia PDF Downloads 247
102 Evaluating the Use of Swedish by-Product Foundry Sand in Asphalt Mixtures

Authors: Dina Kuttah


It is well known that recycling of by-product materials saves natural resources, reduces by-product volumes, and reduces the need for virgin materials. The steel industry produces a myriad of metal components for industrial chains, which in turn generates mineral discarded sand molds. Although these sands are clean before their use, after casting, they may contain contaminants. Therefore, huge quantities of excess by-product foundry sand (BFS) end up occupying large volumes in landfills. In Sweden, approximately 200000 tonnes of excess BFS end up in landfills. The transportation and construction industries have the greatest potential for reuse by-products because they use vast quantities of earthen materials annually. Accordingly, experimental work has been undertaken to evaluate the possible use of two chosen BFS from two Swedish foundries in a conventional Swedish asphalt mixture. The experimental procedure of this research has focused on the dosage, environmental and technical properties of the same mixture type ABT 11 and the same bitumen (160/220) but at different replacement proportions of the conventional fine sand with the two BFS. The environmental requirements, in addition to the technical requirements, namely, void ratio, static indirect tensile strength ratio, and resilient modulus before and after moisture-induced sensitivity tests of the asphalt mixtures, have been investigated in the current study. The test results demonstrated that the BFS from both foundries can be incorporated in the selected asphalt mixture at specified replacement proportions of the conventional fine sand fraction 0-2 mm, as discussed in the paper.

Keywords: asphalt mixtures, by-product foundry sand, indirect tensile strength, moisture induced sensitivity tests, resilient modulus

Procedia PDF Downloads 65
101 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon

Authors: Jeffrey A. Amelse


Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.

Keywords: carbon dioxide, net zero, sequestration, biomass, leaves

Procedia PDF Downloads 40
100 The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter

Authors: Parvin Berenjkar, Qiuyan Yuan, Richard Sparling, Stan Lozecznik


Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover.

Keywords: bio-cover, global warming, landfill, methanotrophic activity

Procedia PDF Downloads 50
99 Bioreactor Simulator Design: Measuring Built Environment Health and Ecological Implications from Post-Consumer Textiles

Authors: Julia DeVoy, Olivia Berlin


The United States exports over 1.6 billion pounds of post-consumer textiles every year, primarily to countries in the Global South. These textiles make their way to landfills and open-air dumps where they decompose, contaminating water systems and releasing harmful greenhouse gases. Through this inequitable system of waste disposal, countries with less political and economic power are coerced into accepting the environmental and health consequences of over-consumption in the Global North. Thus, the global trade of post-consumer textile waste represents a serious issue of environmental justice and a public health hazard. Our research located, characterizes, and quantifies the environmental and human health risks that occur when post-consumer textiles are left to decompose in landfills and open-air dumps in the Global South. In our work, we make use of United Nations International Trade Statistics data to map the global distribution of post-consumer textiles exported from the United States. Next, we present our landfill simulating reactor designed to measure toxicity of leachate resulting from the decomposition of textiles in developing countries and to quantify the related greenhouse gas emissions. This design makes use of low-cost and sustainable materials to promote frugal innovation and make landfill reactors more accessible. Finally, we describe how the data generated from these tools can be leveraged to inform individual consumer behaviors, local policies around textile waste disposal, and global advocacy efforts to mitigate the environmental harms caused by textile waste.

Keywords: sustainability, textile design, public health, built environment

Procedia PDF Downloads 34
98 Production and Recycling of Construction and Demolition Waste

Authors: Vladimira Vytlacilova


Recycling of construction and demolition waste (C&DW) and their new reuse in structures is one of the solutions of environmental problems. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills all the time. The paper deals with the situation of the recycling of the building and demolition waste in the Czech Republic during the recent years. The paper is dealing with questions of C&D waste recycling, it also characterizes construction and demolition waste in general, furthermore it analyses production of construction waste and subsequent production of recycled materials.

Keywords: Recycling, Construction and demolition waste, Recycled rubble, Waste management

Procedia PDF Downloads 205
97 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada

Authors: Simran Kaur, Paul J. Van Geel


A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.

Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization

Procedia PDF Downloads 60
96 Chemical Leaching of Metals from Landfill’s Fine Fraction

Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas


Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.

Keywords: fine fraction, landfills, leached metals, leaching kinetics

Procedia PDF Downloads 66
95 Assessments of Internal Erosion in a Landfill Due to Changes in the Groundwater Level

Authors: Siamak Feizi, Gunvor Baardvik


Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such a condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due to changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software was conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions, and necessary measures to prevent or reduce the risk for the landfill operator.

Keywords: erosion, seepage, landfill, stability

Procedia PDF Downloads 55
94 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty

Authors: Ammar Y. Alqahtani


In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.

Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics

Procedia PDF Downloads 75