Search results for: heterogeneous catalysts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1105

Search results for: heterogeneous catalysts

865 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 106
864 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 61
863 Theoretical and Experimental Study on the NO Reduction by H₂ over Char Decorated with Ni at low Temperatures

Authors: Kaixuan Feng, Ruixiang Lin, Yuyan Hu, Yuheng Feng, Dezhen Chen, Tongcheng Cao

Abstract:

In this study, we propose a reaction system for the low-temperature reduction of NO by H₂ on carbon-based materials decorated with 5%wt. Ni. This cost-effective catalyst system efficiently utilizes pyrolysis carbon-based materials and waste hydrogen. Additionally, it yields environmentally friendly products without requiring extra heat sources in practical SCR devices. Density functional theory elucidates the mechanism of NO heterogeneous reduction by H₂ on Ni-decorated char surfaces. Two distinct reaction paths were identified, one involving the intermediate product N₂O and the other not. These pathways exhibit different rate-determination steps and activation energies. Kinetic analysis indicates that the N₂O byproduct pathway has a lower activation energy. Experimental results corroborate the theoretical findings. Thus, this research enhances our mechanistic understanding of the NO-H₂ reaction over char and offers insights for optimizing catalyst design in low-temperature NO reduction.

Keywords: char-based catalysis, NO reduction, DFT study, heterogeneous reaction, low-temperature H₂-reduction

Procedia PDF Downloads 43
862 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia

Authors: Mulugeta Gurum Gerechal

Abstract:

Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.

Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue

Procedia PDF Downloads 22
861 Effects of Dispersion on Peristaltic Flow of a Micropolar Fluid Through a Porous Medium with Wall Effects in the Presence of Slip

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

This paper investigates the effects of slip boundary condition and wall properties on the dispersion of a solute matter in peristaltic flow of an incompressible micropolar fluid through a porous medium. Long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that peristalsis enhances dispersion. It also increases with micropolar parameter, cross viscosity coefficient, Darcy number, slip parameter and wall parameters. Further, dispersion decreases with homogenous chemical reaction rate and heterogeneous chemical reaction rate.

Keywords: chemical reaction, dispersion, peristalsis, slip condition, wall properties

Procedia PDF Downloads 437
860 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 132
859 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 313
858 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst

Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš

Abstract:

Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.

Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory

Procedia PDF Downloads 82
857 Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts

Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng

Abstract:

Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.

Keywords: degradation, kinetics, methyl orange, photocatalysis

Procedia PDF Downloads 311
856 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 102
855 (Re)connecting to the Spirit of the Language: Decolonizing from Eurocentric Indigenous Language Revitalization Methodologies

Authors: Lana Whiskeyjack, Kyle Napier

Abstract:

The Spirit of the language embodies the motivation for indigenous people to connect with the indigenous language of their lineage. While the concept of the spirit of the language is often woven into the discussion by indigenous language revitalizationists, particularly those who are indigenous, there are few tangible terms in academic research conceptually actualizing the term. Through collaborative work with indigenous language speakers, elders, and learners, this research sets out to identify the spirit of the language, the catalysts of disconnection from the spirit of the language, and the sources of reconnection to the spirit of the language. This work fundamentally addresses the terms of engagement around collaboration with indigenous communities, itself inviting a decolonial approach to community outreach and individual relationships. As indigenous researchers, this means beginning, maintain, and closing this work in the ceremony while being transparent with community members in this work and related publishing throughout the project’s duration. Decolonizing this approach also requires maintaining explicit ongoing consent by the elders, knowledge keepers, and community members when handling their ancestral and indigenous knowledge. The handling of this knowledge is regarded in this work as stewardship, both in the handling of digital materials and the handling of ancestral Indigenous knowledge. This work observes recorded conversations in both nêhiyawêwin and English, resulting from 10 semi-structured interviews with fluent nêhiyawêwin speakers as well as three structured dialogue circles with fluent and emerging speakers. The words were transcribed by a speaker fluent in both nêhiyawêwin and English. The results of those interviews were categorized thematically to conceptually actualize the spirit of the language, catalysts of disconnection to thespirit of the language, and community voices methods of reconnection to the spirit of the language. Results of these interviews vastly determine that the spirit of the language is drawn from the land. Although nêhiyawêwin is the focus of this work, Indigenous languages are by nature inherently related to the land. This is further reaffirmed by the Indigenous language learners and speakers who expressed having ancestries and lineages from multiple Indigenous communities. Several other key differences embody this spirit of the language, which include ceremony and spirituality, as well as the semantic worldviews tied to polysynthetic verb-oriented morphophonemics most often found in indigenous languages — and of focus, nêhiyawêwin. The catalysts of disconnection to the spirit of the language are those whose histories have severed connections between Indigenous Peoples and the spirit of their languages or those that have affected relationships with the land, ceremony, and ways of thinking. Results of this research and its literature review have determined the three most ubiquitously damaging interdependent factors, which are catalysts of disconnection from the spirit of the language as colonization, capitalism, and Christianity. As voiced by the Indigenous language learners, this work necessitates addressing means to reconnect to the spirit of the language. Interviewees mentioned that the process of reconnection involves a whole relationship with the land, the practice of reciprocal-relational methodologies for language learning, and indigenous-protected and -governed learning. This work concludes in support of those reconnection methodologies.

Keywords: indigenous language acquisition, indigenous language reclamation, indigenous language revitalization, nêhiyawêwin, spirit of the language

Procedia PDF Downloads 121
854 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 76
853 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro

Authors: Qiuyue Peng, Vladimir Zachar

Abstract:

The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.

Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations

Procedia PDF Downloads 81
852 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 206
851 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System

Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal

Abstract:

Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.

Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks

Procedia PDF Downloads 358
850 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan

Abstract:

It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.

Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic

Procedia PDF Downloads 194
849 Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support

Authors: L. M. Ombaka, R. S. Oosthuizen, P. G. Ndungu, V. O. Nyamori

Abstract:

Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation.

Keywords: pyrrolic N-CNTs, hydrogenation reactions, chemical vapour deposition technique

Procedia PDF Downloads 332
848 An Analysis of a Queueing System with Heterogeneous Servers Subject to Catastrophes

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

This study analyzed a queueing system with blocking and no waiting line. The customers arrive according to a Poisson process and the service times follow exponential distribution. There are two non-identical servers in the system. The queue discipline is FCFS, and the customers select the servers on fastest server first (FSF) basis. The service times are exponentially distributed with parameters μ1 and μ2 at servers I and II, respectively. Besides, the catastrophes occur in a Poisson manner with rate γ in the system. When server I is busy or blocked, the customer who arrives in the system leaves the system without being served. Such customers are called lost customers. The probability of losing a customer was computed for the system. The explicit time dependent probabilities of system size are obtained and a numerical example is presented in order to show the managerial insights of the model. Finally, the probability that arriving customer finds system busy and average number of server busy in steady state are obtained numerically.

Keywords: queueing system, blocking, poisson process, heterogeneous servers, queue discipline FCFS, busy period

Procedia PDF Downloads 477
847 Investigation of Flow Behavior inside the Single Channel Catalytic Combustor for Lean Mixture

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustor substantially reduces emission entailing fuel-air premixing at very low equivalence ratios. The catalytic combustion of natural gas has the potential to become sufficiently active at light off temperature by the convection of heat from the catalyst surface. Only one channel is selected to investigate both the gas and surface reactions in the catalyst bed because of the honeycomb structure of the catalytic combustor. The objective of the present study is to find the methane catalytic combustion behavior inside the catalytic combustor, where the gas phase kinetics is employed by homogeneous methane combustion and surface chemistry is described with the heterogeneous catalysis of the oxidation of methane on a platinum catalyst. The reaction of the premixed mixture in the catalytic regime improves flame stability with complete combustion for lower operating flame temperature. An overview of the flow behavior is presented inside the single channel catalytic combustor including the operation of catalytic combustion with various F/A ratios and premixed inlet temperature.

Keywords: catalytic combustor, equivalence ratios, flame temperature, heterogeneous catalysis, homogeneous combustion

Procedia PDF Downloads 237
846 Co-Immobilization of Palladium Nanoparticles and Polyoxometalate into the Cavities of the Mesocellular Foams: A Biomimetic Cooperative Catalytic System for Aerobic Oxidation of Alcohols under Green Conditions

Authors: Saeed Chehri, Sirvan Moradi, Amin Rostami

Abstract:

Cooperative catalyst systems have been developed as highly promising sustainable alternatives to traditional catalysts. In these catalysts, two or more catalytic centers cooperate to reduce the energy of chemical transformations. In nature, such systems are abundantly seen in metalloenzymes that use metal and an organic cofactor. We have designed a reusable cooperative catalyst oxidation system consisting of palladium nanoparticles and polyoxometalate. This biomimetic cooperative catalytic system was synthesized by the stepwise immobilization of palladium nanoparticlesandpolyoxometalateinto the same cavity of siliceous mesocellularfoams (Pd-POM@MCF)and wascharacterizedby SEM, EDX, FT-IR, TGAand ICP techniques. POM-Pd@MCF/HQexhibits high activity toward aerobic oxidation of alcohols to the corresponding carbonyl compoundsin water solvent at room temperature. The major novelties and advantages of this oxidation method are as follows: (i) this is the first report of the co-immobilization of polyoxometalateand palladium for use as a robust and highlyefficient heterogeneouscooperative oxidative nanocatalyst system for aerobic oxidation of alcohols, (ii) oxidation of alcoholswere performed using an ideal oxidant with good to high yields in a green solvent at ambient temperature and (iii) the immobilization of the oxygen-activating catalyst(polyoxometalate) and oxidizing catalyst (Pd) onto MCF provide practical cooperative catalyst the system that can be reused several times without a significant loss of activity (vi) the methodsconform to several of the guiding principles of green chemistry.

Keywords: palladium nanoparticles, polyoxometalate, reusable cooperative catalytic system, biomimetic oxidation reaction

Procedia PDF Downloads 88
845 Spiritual Symbols of African Fruits as Responsive Catalysts for Naturopathy

Authors: Orogun Daniel Oghenekevhwe

Abstract:

Africa being an agrarian continent has an abundance of fruits that are both nutritional and medicinal. Regardless of the abundance of these healing elements, Africa leads the statistics of poor healthcare globally. Among others, there are two noticeable challenges in the healthcare system which are ‘Poor access and high cost of medical healthcare’. The effects of both the access and economic implications are (1) Low responsiveness and (2) High mortality rate. While the United Nations and the global health community continue to work towards reduced mortality rates and poor responsiveness to healthcare and wellness, this paper investigates how some Africans use the spiritual symbols of African fruits as responsive catalysts to embrace naturopathy thereby reducing the effects and impacts of poor healthcare challenges in Africa. The main argument is whether there are links between spiritual symbols and fruits that influence Africans' response to naturopathy and low-cost healthcare. Following that is the question of how medical healthcare responds to such development. Bitter Kola (Garcinia) is the case study fruit, and Sunnyside in Pretoria, South Africa, has been spotted as one of the high-traffic selling points of herbal fruits. A mixed research method is applicable with an expected 20 Quantitative data respondents among sellers and nutritionists and 50 Qualitative Data respondents among consumers. Based on the results, it should be clear how spirituality contributes to alternative healthcare and how it can be further encouraged to bridge the gap between the high demand and low supply of healthcare in Africa and beyond.

Keywords: spiritual symbols, naturopathy, African fruits, spirituality, healthcare

Procedia PDF Downloads 34
844 The Effect of Framework Structure on N2O Formation over Cu-Based Zeolites during NH3-SCR Reactions

Authors: Ghodsieh Isapour Toutizad, Aiyong Wang, Joonsoo Han, Derek Creaser, Louise Olsson, Magnus Skoglundh, Hanna HaRelind

Abstract:

Nitrous oxide (N2O), which is generally formed as a byproduct of industrial chemical processes and fossil fuel combustion, has attracted considerable attention due to its destructive role in global warming and ozone layer depletion. From various developed technologies used for lean NOx reduction, the selective catalytic reduction (SCR) of NOx with ammonia is presently the most applied method. Therefore, the development of catalysts for efficient lean NOx reduction without forming N2O in the process, or only forming it to a very small extent from the exhaust gases is of crucial significance. One type of catalysts that nowadays are used for this aim are zeolite-based catalysts. It is owing to their remarkable catalytic performance under practical reaction conditions such as high thermal stability and high N2 selectivity. Among all zeolites, copper ion-exchanged zeolites, with CHA, MFI, and BEA framework structure (like SSZ-13, ZSM-5 and Beta, respectively), represent higher hydrothermal stability, high activity and N2 selectivity. This work aims at investigating the effect of the zeolite framework structure on the formation of N2O during NH3-SCR reaction conditions over three Cu-based zeolites ranging from small-pore to large-pore framework structure. In the zeolite framework, Cu exists in two cationic forms, that can catalyze the SCR reaction by activating NO to form NO+ and/or surface nitrate species. The nitrate species can thereafter react with NH3 to form another intermediate, ammonium nitrate, which seems to be one source for N2O formation at low temperatures. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that during the NO oxidation step, mainly NO+ and nitrate species are formed on the surface of the catalysts. The intensity of the absorption peak attributed to NO+ species is higher for the Cu-CHA sample compared to the other two samples, indicating a higher stability of this species in small cages. Furthermore, upon the addition of NH3, through the standard SCR reaction conditions, absorption peaks assigned to N-H stretching and bending vibrations are building up. At the same time, negative peaks are evolving in the O-H stretching region, indicating blocking/replacement of surface OH-groups by NH3 and NH4+. By removing NH3 and adding NO2 to the inlet gas composition, the peaks in the N-H stretching and bending vibration regions show a decreasing trend in intensity, with the decrease being more pronounced for increasing pore size. It can probably be owing to the higher accumulation of ammonia species in the small-pore size zeolite compared to the other two samples. Furthermore, it is worth noting that the ammonia surface species are strongly bonded to the CHA zeolite structure, which makes it more difficult to react with NO2. To conclude, the framework structure of the zeolite seems to play an important role in the formation and reactivity of surface species relevant for the SCR process. Here we intend to discuss the connection between the zeolite structure, the surface species, and the formation of N2O during ammonia-SCR.

Keywords: fast SCR, nitrous oxide, NOx, standard SCR, zeolites

Procedia PDF Downloads 202
843 Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides

Authors: Chaima Zoulikha Tabet Zatla, Nihel Dib, Sumeya Bedrane, Juan Carlos Hernandez Garrido, Redouane Bachir, Miguel Angel Cauqui, Jose Juan Calvino Gamez

Abstract:

These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM.

Keywords: furfural, ruthenium, silica-alumina, biomass, biofuel

Procedia PDF Downloads 52
842 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 89
841 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation

Procedia PDF Downloads 253
840 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters

Authors: Vibha Sinha, Sumedha Chakma

Abstract:

Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.

Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification

Procedia PDF Downloads 159
839 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems

Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi

Abstract:

The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.

Keywords: mobile databases, synchronization, cache, response time

Procedia PDF Downloads 363
838 Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides

Authors: Gheorghiţa Mitran, Adriana Urdă, Mihaela Florea, Octavian Dumitru Pavel, Florentina Neaţu

Abstract:

Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content.

Keywords: malic acid, oxidative dehydrogenation, hydrogenation, oxaloacetic acid

Procedia PDF Downloads 150
837 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 43
836 Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M.-S. Shaharun

Abstract:

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial for the production of clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in microactivity fixed-bed system at 250 °C, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance was strongly affected by the loading of the active site. Where, the catalytic activity, methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14 % and methanol selectivity of 92 % were obtained over Cu/ZnO-SBA-15 catalyst with total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well disperses active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, metal loading, Cu/ZnO-SBA-15 catalyst

Procedia PDF Downloads 187