Search results for: gaseous compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2460

Search results for: gaseous compounds

2430 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: antioxidant, stearate, carbon black, polyethylene

Procedia PDF Downloads 339
2429 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 487
2428 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: photocatalytic oxidation process, formaldehyde (HCHO), silk fibroin (SF), titanium dioxide (TiO2)

Procedia PDF Downloads 446
2427 Separation and Purification of Oligostilbenes Using HPLC with Dereplication Strategy

Authors: Nurhuda Manshoor, Mohd Fazirulrahman Fathil, Muhammad Hakim Jaafar, Mohd Amirul S. A. Jalil

Abstract:

The leaves of Neobalanocarpus heimii were investigated for their oligostilbene contents. Prior to isolation process, the determinations of compounds were based on mass spectrometric fragmentation patterns. Three compounds, heimiol B, hopeaphenol, and vaticaphenol A were identified directly from the crude extract. Preparative high-performance liquid chromatography (HPLC) was used to isolate and purify the other compounds. The purified compounds were then analyzed using NMR spectroscopy to identify the compound structure and stereochemistry. The method employed for the research modified to comply with different HPLC techniques such as preparative and analytical techniques. The crude sample was injected into preparative HPLC to obtain several fractions which consist of oligostilbene mixture. The fractions were further isolated using analytical HPLC to obtain four pure compounds. The compounds then were characterized using nuclear magnetic resonance (NMR). The result shows that the leaves extract of Neobalanocarpus heimii contain three oligostilbenes, namely vaticanol A, balanocarpol, and vaticaphenol A, and a galactopyranose.

Keywords: balanocarpol, hemiol B, hopeaphenol, vaticanol A, vaticaphenol A

Procedia PDF Downloads 461
2426 Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity

Authors: Firdaousse Laincer, Rahima Laribi, Abderazak Tamendjari, Rovellini Venturini

Abstract:

Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases.

Keywords: antibacterial activity, olive oil, phenols, HPLC

Procedia PDF Downloads 419
2425 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 109
2424 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals

Authors: Funda Ates

Abstract:

Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.

Keywords: Barley straw, pyrolysis, catalyst, phenolics

Procedia PDF Downloads 191
2423 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: Torchane Lazhar

Abstract:

In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel

Procedia PDF Downloads 385
2422 Synthesis, Molecular Docking, and Cytotoxic Activity of Novel Triazolopyridazine Derivatives

Authors: Azza T. Tahera, Eman M. Ahmeda, Nadia A. Khalila, Yassin M. Nissanb

Abstract:

New 3-(pyridin-4-yl)-[1,2,4] triazolo [4,3-b] pyridazine derivatives 2a-i, 4a,b and 6a,b were designed, synthesized and evaluated as cytotoxic agents. All compounds were investigated for their in vitro cytotoxicity at a single dose 10-5M concentration towards 60 cancer cell lines according to USA NCI protocol. The preliminary screening results showed that the majority of tested compounds exhibited remarkable activity against SR (leukemia) cell panel. Molecular docking for all synthesized compounds was performed on the active site of c-Met kinase. The most active compounds, 2f and 4a were further evaluated at a seven dose level screening and their IC50 as a c-Met kinase inhibitors were determined in vitro.

Keywords: triazolopyridazines, pyridazines, cytotoxic activity, cell panel

Procedia PDF Downloads 504
2421 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract

Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie

Abstract:

In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.

Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk

Procedia PDF Downloads 133
2420 Rising Levels of Greenhouse Gases: Implication for Global Warming in Anambra State South Eastern Nigeria

Authors: Chikwelu Edward Emenike, Ogbuagu Uchenna Fredrick

Abstract:

About 34% of the solar radiant energy reaching the earth is immediately reflected back to space as incoming radiation by clouds, chemicals, dust in the atmosphere and by the earth’s surface. Most of the remaining 66% warms the atmosphere and land. Most of the incoming solar radiation not reflect away is degraded into low-quality heat and flows into space. The rate at which this energy returns to space as low-quality heat is affected by the presence of molecules of greenhouse gases. Gaseous emission was measured with the aid of Growen gas Analyzer with a digital readout. Total measurements of eight parameters of twelve selected sample locations taken at two different seasons within two months were made. The ambient air quality investigation in Anambra State has shown the overall mean concentrations of gaseous emission at twelve (12) locations. The mean gaseous emissions showed (NO2=0.66ppm, SO2=0.30ppm, CO=43.93ppm, H2S=2.17ppm, CH4=1.27ppm, CFC=1.59ppb, CO2=316.33ppm, N2O=302.67ppb and O3=0.37ppm). These values do not conform to the National Ambient Air Quality Standard (NAAQS) and thus contribute significantly to the global warming. Because some of these gaseous emissions (SO2, NO2) are oxidizing agents, they act as irritants that damage delicate tissues in the eyes and respiratory passages. These can impair lung function and trigger cardiovascular problems as the heart tries to compensate for lack of Oxygen by pumping faster and harder. The major sources of air pollution are transportation, industrial processes, stationary fuel combustion and solid waste disposal, thus much is yet to be done in a developing country like Nigeria. Air pollution control using pollution-control equipment to reduce the major conventional pollutants, relocating people who live very close to dumpsites, processing and treatment of gases to produce electricity, heat, fuel and various chemical components should be encouraged.

Keywords: ambient air, atmosphere, greenhouse gases, anambra state

Procedia PDF Downloads 397
2419 Pharmacological Active Compounds of Sponges and a Gorgonian Coral from the Andaman Sea, Thailand

Authors: Patchara Pedpradab, Kietisak Yoksang, Kosin Pattanamanee

Abstract:

In our ongoing search for pharmacological significant of compounds from marine organisms, we investigated the active constituents of two sponges (Xestospongia sp., Halichondria sp.) and a gorgonian coral (Juncella sp.) from the Andaman Sea, Thailand. Several compounds were isolated from those of marine organisms. A marine sponge, Xestospongia sp. contained an isoqinoline compound namely aureol and cytotoxic thiophenen sesterterpene while Halichondria sp. produced C-28 sterols. The white gorgonian coral, Juncella sp. contained anti-tuberculosis diterpenes namely, junceellin and praelolide. All of the isolated compounds were analyzed by spectroscopic methods, extensively.

Keywords: Xestospongia sp., Halichondria sp., gorgonian, Juncella sp. biological activity

Procedia PDF Downloads 344
2418 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time

Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi

Abstract:

This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.

Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 334
2417 Design and Synthesis of Novel Benzamides as Non-Ulcerogenic Anti-Inflammatory Agents

Authors: Khadse Saurabh, Talele Gokul, Surana Sanjay

Abstract:

In an endeavor to find a new class of anti-inflammatory agents, a series of novel benzamides (ab1-ab16) were synthesized by utilizing some arylideneoxazolones (az1-az4) having 2-acetyloxyphenyl substitution on their second position. Structures of these synthesized compounds were confirmed by IR, 1H-NMR, 13C NMR, and HRMS. Among the tested benzamide compounds 3ab1, 3ab2, 3ab11, and 3ab16 showed promising anti-inflammatory activity with lessened propensity to cause gastro-intestinal hypermotility and ulceration when compared with standard Indomethacin. Virtual screening was performed by docking the designed compounds into the ATP binding site of COX-2 receptor to predict if these compounds have analogous binding mode to the COX-2 inhibitor.

Keywords: benzamides, anti-inflammatory, gastro-intestinal hypermotility, ulcerogenic activity, docking

Procedia PDF Downloads 411
2416 Identification and Quantification of Phenolic Compounds In Cassia tora Collected from Three Different Locations Using Ultra High Performance Liquid Chromatography – Electro Spray Ionization – Mass Spectrometry (UHPLC-ESI-MS-MS)

Authors: Shipra Shukla, Gaurav Chaudhary, S. K. Tewari, Mahesh Pal, D. K. Upreti

Abstract:

Cassia tora L. is widely distributed in tropical Asian countries, commonly known as sickle pod. Various parts of the plant are reported for their medicinal value due to presence of anthraquinones, phenolic compounds, emodin, β-sitosterol, and chrysophanol. Therefore a sensitive analytical procedure using UHPLC-ESI-MS/MS was developed and validated for simultaneous quantification of five phenolic compounds in leaf, stem and root extracts of Cassia tora. Rapid chromatographic separation of compounds was achieved on Acquity UHPLC BEH C18 column (50 mm×2.1 mm id, 1.7µm) column in 2.5 min. Quantification was carried out using negative electrospray ionization in multiple-reaction monitoring mode. The method was validated as per ICH guidelines and showed good linearity (r2 ≥ 0.9985) over the concentration range of 0.5-200 ng/mL. The intra- and inter-day precisions and accuracy were within RSDs ≤ 1.93% and ≤ 1.90%, respectively. The developed method was applied to investigate variation of five phenolic compounds in the three geographical collections. Results indicated significant variation among analyzed samples collected from different locations in India.

Keywords: Cassia tora, phenolic compounds, quantification, UHPLC-ESI-MS/MS

Procedia PDF Downloads 237
2415 The Biofumigation Activity of Volatile Compounds Produced from Trichoderma afroharzianum MFLUCC19-0090 and Trichoderma afroharzianum MFLUCC19-0091 against Fusarium Infections in Fresh Chilies

Authors: Sarunpron Khruengsai, Patcharee Pripdeevech

Abstract:

This study aimed to investigate the fumigation activities of the volatile compounds produced by Trichoderma spp. against Fusarium oxysporum and F. proliferatum fungi that cause significant rot in fresh chilies. Two Trichoderma spp. were isolated from the leaves of Schefflera leucantha grown in Thailand and later identified as T. afroharzianum MFLUCC19-0090 and T. afroharzianum MFLUCC19-0091. Both in vitro and in vivo dual culture volatile assays were used to study the effects of the produced volatile compounds on mycelial growth. In vitro results showed that the volatile compounds produced by T. afroharzianum MFLUCC19-0090 significantly inhibited the growth of F. oxysporum, while the volatile compounds produced by T. afroharzianum MFLUCC19-0091 significantly inhibited the growth of F. proliferatum. The effectiveness of Trichoderma-derived volatile compounds in inhibiting the mycelial growth of the selected pathogens in the inoculated, fresh chili samples was further demonstrated in vivo. The volatile profiles of both Trichoderma spp. were characterized using gas chromatography-mass spectrometry. Seventy-three volatile compounds were detected from both strains. Among the major volatile compounds detected, phenyl ethyl alcohol was found to possess the strongest antifungal activity against both pathogens. The results support the possibility of using volatile compounds produced by T. afroharzianum MFLUCC19-0090 and T. afroharzianum MFLUCC19-0091 as alternative fumigants for preventing Fusarium rot of fresh chilies during the post-harvest period.

Keywords: antifungal activity, biocontrol, endophytic fungi, post-harvest

Procedia PDF Downloads 110
2414 Design and Facile Synthesis of New Amino Acid Derivatives with Anti-Tumor and Antimicrobial Activities

Authors: Hoda Sabry Othman, Randa Helmy Swellem, Galal Abd El-Moein Nawwar

Abstract:

N-cyanoacetyl glycine is a reactive polyfunctional precursor for synthesis of new difficult accessible compounds including pyridones, thiazolopyridine and others. The key step of this protocol is the formation of different ylidines which underwent Michael addition with carbon nucleophiles affording various heterocyclic compounds. Selected compounds underwent pharmacological evaluation, in vitro against two cell lines; breast cell line (MCF-7),and liver cell line(HEPG2). Compounds 14, 15a and 16 showed IC50 values 8.93, 8.18 and 8.03 (µ/ml) respectively for breast cell line (MCF-7), while the standard drug (Tamoxifen) revealed IC50 8.31. With respect to the liver cell line (HEPG2), compounds 14 and 15a revealed IC50 18.4 and 13.6(µ/ml) respectively while the IC50 of the standard drug(5-Flurouracil) is 25(µ/ml). The antimicrobial activity was also screened and revealed that oxime 7 and ylidine 9f showed a broad-spectrum activity.

Keywords: antitumor, cyanoacetyl glycine, heterocycles, pyridones

Procedia PDF Downloads 301
2413 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk

Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid

Abstract:

The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.

Keywords: volatile organic compounds, decomposition process, food waste, health risk

Procedia PDF Downloads 490
2412 Effect of Brewing on the Bioactive Compounds of Coffee

Authors: Ceyda Dadali, Yeşim Elmaci

Abstract:

Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.

Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing

Procedia PDF Downloads 169
2411 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil

Authors: Kirstin Burger, Paul Watts, Nicole Vorster

Abstract:

Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.

Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis

Procedia PDF Downloads 155
2410 Synthesis and Antiproliferative Activity of 5-Phenyl-N3-(4-fluorophenyl)-4H-1,2,4-triazole-3,4-diamine Derivatives

Authors: L. Mallesha, P. Mallu, B. Veeresh

Abstract:

In the present study, 2, 6-diflurobenzohydrazide and 4-fluorophenylisothiocyanate were used as the starting materials to synthesize 5-phenyl-N3-(4-fluorophenyl)-4H-1, 2, 4-triazole-3, 4-diamine. Further, compound 5-phenyl-N3-(4-fluorophenyl)-4H-1, 2, 4-triazole-3,4-diamine reacted with fluoro substituted benzaldehydes to yield a series of Schiff bases. All the final compounds were characterized using IR, 1H NMR, 13C NMR, MS and elemental analyses. New compounds were evaluated for their antiproliferative effect using the MTT assay method against four human cancer cell lines (K562, COLO-205, MDA-MB231, and IMR-32) for the time period of 24 h. Among the series, few compounds showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Schiff bases, MTT assay, antiproliferative activity, human cancer cell lines, 1, 2, 4-triazoles

Procedia PDF Downloads 339
2409 The Rational Design of Original Anticancer Agents Using Computational Approach

Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi

Abstract:

Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.

Keywords: drug design, anticancer, computational studies, DFT analysis

Procedia PDF Downloads 41
2408 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial

Procedia PDF Downloads 307
2407 Synthesis of Quinazoline Derivatives as Selective Inhibitors of Cyclooxygenase-1 Enzyme

Authors: Marcela Dvorakova, Lenka Langhansova, Premysl Landa

Abstract:

A series of quinazoline derivatives bearing aromatic rings in 2- and 4-positions were prepared and tested for their biological activity. Firstly, the compounds were evaluated for their potential to inhibit various kinases, such as autophagy activating kinase ULK1, 3-Phosphoinositide-dependent kinase 1, and TANK-binding kinase 1. None of the compounds displayed any activity on these kinases. Secondly, the compounds were tested for their anti-inflammatory activity expressed as cyclooxygenase (COX) isoforms and 5-lipoxygenase (5-LOX) inhibition. Three of the compounds showed significant selectivity towards COX-1 isoform (COX-2/COX-1 SI = 20-30). They inhibited COX-1 in a single-digit µM range. There was also one compound that exhibited inhibitory activity towards all three tested enzymes in µM range (IC50COX-1 = 1.9 µM; IC50COX-2 and 5-LOX = 10.1µM. COX-1 inhibition was until recently considered undesirable due to COX-1 constitutive expression in most cell types and tissues. Thus, there are not many compounds known with selective COX-1 activity. However, it is now believed that COX-1 plays an important role in the pathophysiology of several acute and chronic disorders, including cancer or neurodegenerative diseases. Thus, the discovery of effective COX-1 selective inhibitors is desirable and important.

Keywords: cyclooxygenases, kinases, lipoxygenases, quinazolines

Procedia PDF Downloads 109
2406 On the Comprehension of English Compound Nouns by Arabic-Speaking EFL Learners

Authors: Abdel Rahman Altakhaineh, Mohamma Alaghawat, Hiba Alhendi

Abstract:

This paper reports an investigation of the comprehension of English compound nouns by sixty Arabic-speaking English Foreign Language (EFL) learners majoring in English at the University of Jordan, Amman. The investigation focused on the problems that these learners may encounter in understanding certain types of compounds and their ability to use their L1 compound noun knowledge to produce the meaning of L2 compound nouns. Participants whose English proficiency level was advanced underwent a test to identify the meaning ofan underlined compound without using a dictionary. Theresponses to the three different types of compounds were analyzed usingTwo-Way repeated measures ANOVA, and the results showed that there were different endocentric and exocentric compound responses within subordinative compounds, with a statistically significant difference between the two in favor of endocentric compounds. We argue that the endocentric, especially subordinative endocentric compounds,weremore easily understood due to its representative nature, i.e., because the head represents the meaning of the whole compound. The study concludes with pedagogical implications for teaching compound nouns.

Keywords: morphology, compounding, SLA, arabic-speaking EFL learners

Procedia PDF Downloads 81
2405 Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study

Authors: A. Kellou, L. Rouaiguia, L. Rabahi

Abstract:

In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results.

Keywords: density functional theory, hydrogen storage, rare earth compounds, structural and magnetic properties

Procedia PDF Downloads 85
2404 Beta-Cyclodextrin Inclusion Complexes for Antifungal Food Packaging Applications

Authors: Cristina Munoz-Shuguli, Francisco Rodriguez, Julio Bruna, M. Jose Galotto, Abel Guarda

Abstract:

The microbial contamination in fruits due to the presence of fungal is the most important cause of their deterioration and loss. The development of active food packaging materials with antifungal properties has been proposed as an innovative strategy in order to prevent this problem. In this way, natural compounds as the essential oils or their derivatives, also called volatile compounds (VC), can be incorporated in the food packaging materials to control the fungal growth during fruit packaging. However, if the VC is incorporated directly in the packaging material, it is released very fast due to VC high volatility. For this reason, the formation of inclusion complexes through the encapsulation of VC into beta-cyclodextrin (β-CD) and their incorporation in package materials is an alternative to maintain an antifungal atmosphere around the packaged fruits for longer times. In this context, the aim of this work was to develop inclusion complexes based in β-CD and VC (β-CD:VC) for further application in the antifungal food packaging materials development. β-CD:VC inclusion complexes were obtained with two different molar ratios 2:1 and 1:1, through co-precipitation method. The entrapment efficiency of β-CD:VC as well the release of antifungal compound from inclusion complexes exposed to different relative humidity (25, 50, and 97 %) to headspace were determined by gaseous chromatography (GC). Also, thermal and antimicrobial properties of β-CD:VC were determined through thermogravimetric analysis (TGA) and antifungal assays against Botrytis cinerea, respectively. GC results showed that β-CD:VC 2:1 had a higher entrapment efficiency than β-CD:VC 1:1, with values of 75.5 ± 3.71 % and 59.6 ± 1.51 %, respectively. It was probably because during the synthesis of β-CD:VC 1:1, there was less molecular space to the movement of VC molecules. Furthermore, the release of VC from β-CD:VC was directly related with the relative humidity. High amount of VC was released when the inclusion complexes were exposed to high humidity, possibly due to the interactions between the water molecules and the β-CD hydrophilic wall. On the other hand, a better thermal stability of VC in inclusion complexes allowed to verify its effective encapsulation into β-CD. Finally, antimicrobial assays showed that the inclusion complexes had a high antifungal activity at very low concentrations. Therefore, the results obtained in this work allow suggesting the β-CD:VC inclusion complexes as potential candidates to the development of fruit antifungal packaging materials, which activity is relative humidity dependent.

Keywords: Botrytis cinerea, fruit packaging, headspace release, volatile compounds

Procedia PDF Downloads 91
2403 Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds

Authors: Sylvain Caillol, Ghislain David

Abstract:

Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties

Keywords: phenolic resins, formaldehyde-free, vanillin, bio-based, non-toxic

Procedia PDF Downloads 247
2402 Application of Magnetic-Nano Photocatalyst for Removal of Xenobiotic Compounds

Authors: Prashant K. Sharma, Kavita Shah

Abstract:

In recent years, the photochemistry of nanomagnetic particles is being utilized for the removal of various pollutants. In the current era where large quantities of various xenobiotic compounds are released in the environment some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical removal of xenobiotic compounds. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration, light intensity and so on and so forth. Since the xenobiotics are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the xenobiotics. However, commercial application of this technology has to be clearly assessed.

Keywords: magnetic, nanoparticles, photocatalayst, xenobiotic compounds

Procedia PDF Downloads 341
2401 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method

Authors: Asghar Ebrahimi, Elyas Lakzian

Abstract:

For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.

Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell

Procedia PDF Downloads 453