Search results for: endemic lactic acid bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4665

Search results for: endemic lactic acid bacteria

4545 In vitro Analysis of the Effect of Supplementation Oils on Conjugated Linoleic Acid Production by Butyvibrio Fibrisolvense

Authors: B. D. Ravindra, A. K. Tyagi, C. Kathirvelan

Abstract:

Some micronutrients in food (milk and meat), called ‘functional food components’ exert beneficial effects other than their routine nutrient function and conjugated linoleic acid (CLA) is an unsaturated fatty acid of ruminant origin, an example of this category. However, recently the fear of hypercholesterolemia due to saturated fats has led to the avoidance of dietary fat especially of animal origin despite its advantages such as lowering blood cholesterol, immuno-modulation and anticarcinogenic property due to the presence of CLA. The dietary increase of linoleic acid (LA) and linolenic acid (LNA) is one of the feeding strategies for increasing the CLA concentration in milk. Butyrivibrio fibrisolvens is the one potential rumen bacteria, which has high potential to isomerize LA to CLA. The study was conducted to screen the different oils for CLA production, selected based on their LA concentration. Butyrivibrio fibrisolvens culture (strain 49, MZ3, 30/10) were isolated from the rumen liquor of fistulated Buffalo (age ≈ 3 years; weight ≈ 250 kg) were used in in-vitro experiments, further work was carried out with three oils viz., sunflower, mustard and soybean oil at different concentration (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 g/L of media) to study the growth of bacteria and CLA production at different incubation period (0, 8, 12, 18, 24, 48, 72 h). In the present study, growth of the bacteria was decreased linearly with increase in concentration of three oils. However, highest decrease in growth was recorded at the concentration of 0.30 g of three oils per litre of the media. Highest CLA production was 51.96, 42.08 and 25.60 µg/ml at 0.25 g and it decreased to 48.19, 39.35 and 23.41 µg/ml at 0.3 g supplementation of sunflower, soybean, and mustard oil per litre of the media, respectively at 18 h incubation period. The present study indicates the Butyrivibrio fibrisolvens bacteria involves in the biohydrogenation process, and LA rich sunflower meal can be used to improve the CLA production in rumen and thereby increasing the CLA concentration of milk.

Keywords: Butyrivibrio fibrisolvens, CLA, fatty acids, sunflower oil

Procedia PDF Downloads 345
4544 Fermentation with Lactobacillus plantarum CK10 Enhanced Antioxidant Activity of Blueberry Puree

Authors: So Yae Koh, YeonWoo Song, Ji-Yeon Ryu, Jeong Yong Moon, Somi Kim Cho

Abstract:

Blueberry, a perennial shrub, is one of the most popular fruits due to its flavor and strong free radical scavenging properties. In this study, the blueberry puree was fermented by Lactobacillus plantarum CK10 and the antioxidant activities of fermentation products were examined. Various conditions with different supplements (5% sucrose or 10% skim milk) were evaluated for fermentation efficiency and the effects on antioxidant properties. The viable cell count of lactic acid bacteria, pH, total phenolic compounds and flavonoids contents were measured after 7 days of fermentation. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activities were highly enhanced compared to non-fermented blueberry puree after fermentation. Interestingly, the antioxidant activities were greatly increased in the fermentation of blueberry puree alone without supplements. The present results indicate that the blueberry puree fermented by Lactobacillus plantarum CK10 could be used as a potential source of natural antioxidants and these findings will facilitate the utilization of blueberry as a resource for food additive.

Keywords: antioxidant activity, blueberry, lactobacillus plantarum CK10, fermentation

Procedia PDF Downloads 322
4543 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend

Authors: Elahe Moradi, Hoseinali A. Khonakdar

Abstract:

The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.

Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT

Procedia PDF Downloads 31
4542 Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria

Authors: Yılmaz Uçar, Fatih Ozogul, Mustafa Durmuş, Yesim Ozogul, Ali Rıza Köşker, Esmeray Kuley Boğa, Deniz Ayas

Abstract:

The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens.

Keywords: High-Performance Liquid Chromatography (HPLC), docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA, minimum inhibitory concentration, MIC, Pseudomonas aeruginosa PR3

Procedia PDF Downloads 465
4541 Sustainable Development of Eco-Friendly Bio-Nanocomposites: Utilizing Nanocellulose Extracted From Saccharum Officinarum for Advanced Applications

Authors: Ngwenya M., Gumede T. P., Perez Camargo R. A., Motloung B.

Abstract:

This study presents the development of eco-friendly bio-nanocomposites using poly(lactic acid) (PLA), poly(caprolactone) (PCL), and their blends with nanocellulose extracted from Saccharum Officinarum. The extracted nanocellulose was optimized through chemical treatment and hydrolysis processes, yielding a sustainable and renewable resource for enhancing polymer properties. Bio-nanocomposites of PLA/nanocellulose, PCL/nanocellulose, and PLA/PCL/nanocellulose with varying nanocellulose contents (1, 3, and 5 wt%) were prepared via melt-blending and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic mechanical analysis (DMA) and tensile testing. The results show significant improvements in the thermal and mechanical properties of the polymeric matrices upon the addition of nanocellulose, demonstrating the potential of these bio-nanocomposites for advanced applications. These developments are promising for obtaining bio-nanocomposites from local bio-sources, leading to more sustainable and eco-friendly alternatives to traditional materials.

Keywords: bionanocomposites, polycaprolactone, poly(lactic acid), nanocellulose, saccharum officinarum

Procedia PDF Downloads 18
4540 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme

Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh

Abstract:

The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.

Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry

Procedia PDF Downloads 459
4539 Optimal Temperature and Time for Lactic Coagulation of Milk Containing Antibiotic: Evaluation of Yogurt Fermentation Parameters

Authors: Arezoo Ghadi, Adonis Pishdadian, Ehsan Zahedi, Vahideh Rashedi, Mozhgan Mohammadi

Abstract:

The presence of antibiotics in milk is one of the problems of dairy production units, especially yogurt and cheese, which leads to a decrease in lactic coagulation. Here, to assess the incubation conditions for the fermentation of milk containing antibiotics, concentrations of 50, 75, 100, and 200 ppb of tetracycline were added to each liter of milk. Inoculation process with starter culture performed at three temperatures of 35°C, 45°C, and 50°C. Afterward, pH, acidity, oxidation-reduction potential, and lactic coagulation of yogurt were evaluated. The results showed the existence of antibiotics in milk affects the quality and physicochemical properties of yogurt. However, antibiotic concentration and change in incubation temperature play a crucial role in the lactic coagulation of yogurt, such that the best lactic coagulation was observed at 50°C and a concentration of 50ppb. Hence, for tetracycline concentrations less than 75ppb, a process temperature of 50°C and incubation time of ~10 h recommend for fermentation of milk containing antibiotics.

Keywords: antibiotics residues, yogurt, fermentation parameters, incubation temperature

Procedia PDF Downloads 66
4538 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria

Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake

Abstract:

Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.

Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship

Procedia PDF Downloads 104
4537 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance

Authors: Abishek Rajkumar

Abstract:

Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.

Keywords: antibiotic, molecular, mutation, resistance

Procedia PDF Downloads 296
4536 Antioxidant and Antimicrobial Activities of Phenolic Extracts of Endemic Plants Marrubium deserti and Ammodaucus leucotrichus from Algeria

Authors: Sifi Ibrahim, Benaddou Fatima Zohra, Yousfi Mohamed

Abstract:

The Marrubium deserti and Ammodaucus leucotrichus L. an Algerian endemic species, has several applications in traditional medicine for example as a remedy for asthma and diabetes, and was found to have antibacterial properties. In this work, an antioxidant and antimicrobial activities was performed on phenolic extracts of Marrubium deserti, Ammodaucus leucotrichus plants. The yield of methanol maceration of these plants is 12.4% and 20.4% respectively. The content of total polyphenols, flavonoids and anthocyanin in methanolic extracts, are varied between 19.52±1.88 and 59.24±3.45 mg/g gallic acid equivalent, and 2.08±0.29 to 1.46±0.39 mg/g quercetin equivalent, and 0.395 to 1.934µmol/g respectively. The total chlorophylls and carotenoids were be ranged from 0.149±0.20 to 1.537±0.20 g/ml and 1.537±0.20 to 0.149 ± 0.20 g/ml, respectively. According to DPPH and FRAP test, the values of EC50 was shows a higher activity of Marrubium deserti than Ammodaucus leucotrichus with EC50 values (DPPH) were 34.53±0.71 μg/mL and 258.60±15.67 mg/ml respectively. The TEAC values of FRAP test was a highly superior for Marrubium deserti 209.66±0.26 mg Equivalent Trolox/g dry residue than Ammodaucus leucotrichus 45.88±2.93 mg Trolox Equivalent/g dry residue. The antimicrobial activity against nine strains of bacteria (Staphylococcus aureus(+), Staphylococcus aureus (-), Bacillus cereus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), was showed that the tested extracts are a significant antibacterial activity with inhibition zones ranging from 10 to 50 mm. the value of CMI were ranging from 0.89 to 14.29 mg/ml.

Keywords: phenolic extract, antioxidant activity, antimicrobial activity, Marrubium deserti, Ammodaucus leucotrichus

Procedia PDF Downloads 362
4535 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete

Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton

Abstract:

Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.

Keywords: perlite concrete, poly-lactic acid (pla), expanded polystyrene (eps), concrete

Procedia PDF Downloads 280
4534 Effect of Synbiotics on Rats' Intestinal Microbiota

Authors: Da Yoon Yu, Jeong A. Kim, In Sung Kim, Yeon Hee Hong, Jae Young Kim, Sang Suk Lee, Sung Chan Kim, So Hui Choe, In Soon Choi, Kwang Keun Cho

Abstract:

The present study was conducted to identify the effects of synbiotics composed of lactic acid (LA) bacteria (LAB) and sea tangle on rat’s intestinal microorganisms and anti-obesity effects. The experiment was conducted for six weeks using an 8-week old male rat as experiment animals and the experimental design was to use six treatments groups of 4 repetitions using three mice per repetition. The treatment groups were organized into a normal fat diet control (NFC), a high fat (HF) diet control (HFC), a prebiotic 0% treatment (HF+LA+sea tangle 0%, ST0), a prebiotic 5% treatment (HF+LA+sea tangle 5%, ST5), a prebiotic 10% treatment (HF+LA+sea tangle 10%, ST10), and a prebiotic 15% treatment group (HF+LA+sea tangle 15%, ST15) to conduct experiments with various levels of prebiotics. According to the results of the experiment, the NFC group showed the highest daily weight gain (22.34g) and the ST0 group showed the lowest daily weight gain (19.41g). However, weight gains during the entire experimental period were the highest in the HFC group (475.73g) and the lowest in the ST0 group (454.23g). Feed efficiency was the highest in the HFC group (0.20). Treatment with synbiotics composed of LAB and sea tangle suppressed weight increases due to HF diet and reduced feed efficiency. Intestinal microorganisms were identified through pyrosequncing and according to the results, Firmicutes phylum (approximately 60%) and Bacteroidetes phylum (approximately 30%) accounted for approximately 90% or more of intestinal microorganisms in all of the treatment groups indicating these bacteria are dominating in the intestines. Firmicutes that is related to weight increases accounted for 64.96% of microorganisms in the NFC group, 75.32% in the HFC group, 59.51% in the ST0 group, 61.29% in the ST5 group, 49.91% in the ST10 group, and 39.65% in the ST15 group. Therefore, Firmicutes showed the highest share the HFC group that showed high weight gains and the lowest share in the group treated with mixed synbiotics composed of LAB and sea tangle. Bacteroidetes that is related to weight gain inhibition accounted for 32.12% of microorganisms in the NFC group, and HFC group 21.57%, ST0 group 37.66%, ST5 group 34.92%, ST10 group 44.46%, and ST15 group 53.22%. Therefore, the share of Bacteroidetes was the lowest in the HFC group with no addition of synbiotics and increased along with the level of treatment with synbiotics. Changes in blood components were not significantly different among the groups and SCFA yields were shown to be higher in groups treated with synbiotics than in groups not added with synbiotics. Through the present study, it was shown that the supply of synbiotics composed of LAB and sea tangle increased feed intake but led to weight losses and that the intake of synbiotics composed of LAB and sea tangle had anti-obesity effects due to decreases in Firmicutes which are microorganisms related to weight gains and increases in Bacteroidetes which are microorganisms related to weight losses. Therefore, synbiotics composed of LAB and sea tangle are considered to have the effect to prevent metabolic disorders in the rat.

Keywords: bacteroidetes, firmicutes, intestinal microbiota, lactic acid, sea tangle, synbiotics

Procedia PDF Downloads 371
4533 Poly (Lactic Acid)/Poly (Butylene Adipate-Co-terephthalate) Films Reinforced with Polyhedral Oligomeric Silsesquioxane Nanoparticles

Authors: Elahe Moradi, Hossein Ali Khonakdar

Abstract:

In the context of the growing interest in renewable polymers, this study presents an innovative approach to environmental conservation through the development of an eco-friendly structure. The research focused on enhancing the compatibility between two immiscible polymers, poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT), using polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with an epoxy functional group (Epoxy-POSS). This was achieved through a solution casting method. The study found that the modulus in the glassy region for blends containing Epoxy-POSS was significantly higher than that of the PLA/PBAT blend without Epoxy-POSS. However, in the transition and rubbery regions, the modulus of the Epoxy-POSS-containing blends was only marginally greater. From a mechanical properties’ perspective, the study demonstrated that the incorporation of POSS-EPOXY at varying concentrations enhanced the tensile strength of the PLA/PBAT blend by 30%, thereby acting as a reinforcement. This finding underscores the potential of this approach in the development of renewable polymers.

Keywords: Polyhedral oligomeric silsesquioxane, mechanical behavior, PLA, PBAT, nanocomposite

Procedia PDF Downloads 27
4532 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 289
4531 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering

Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva

Abstract:

Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.

Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds

Procedia PDF Downloads 240
4530 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Alec Chabwinja, Cannan Tawonezvi, Jerneja Vidmar, Constance Chingwaru, Walter Chingwaru

Abstract:

Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: lactic acid bacteria, Staphylococcus aureus, Streptococcus spp, yeast, inhibition, acid tolerance

Procedia PDF Downloads 375
4529 The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia

Authors: Kacharava Tamar, Korakhashvili Avtandil, Epitashvili Tinatin

Abstract:

The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern.

Keywords: aromatic, medicinal, poisonous, spicy, dye plants, endemic biodiversity, endemic, ELISA, GIS

Procedia PDF Downloads 124
4528 Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity

Authors: Fdhila Walid, Bayar Sihem, Khouidi Bochra, Maâtouk Fethi, Ben Amor Feten, Hajer Hentati, Mahdhi Abdelkarim

Abstract:

The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods).

Keywords: probiotic, pathogenic bacteria, yeast, oral cavity

Procedia PDF Downloads 348
4527 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 71
4526 Endemic Medicinal Plants in Eritrea: Scientific Name, Botanical Description and Geographical Location

Authors: Liya Abraham

Abstract:

Medicinal plants are globally valuable sources of herbal products, either as lifesaving or life maintaining medicines. Studies reveal that more than 25% of modern drugs in the world are derived from plants. The Horn of Africa as a world hotspot; it has more than 1500 endemic plants. Eritrea, a country located in the Horn of Africa, is blessed with medicinal flora and fauna and marine and terrestrial biodiversity. Previous studies of flora of Ethiopia and Eritrea, incomplete species lists, indicate figures ranging between 6000 and 7000 species, with levels of endemism between 12–20%. In the past two decades, there has been growing interest in natural remedy herbal medicines owing to, but not limited to; resistance to antimicrobials, intolerance of side effects of modern drugs, and rise in chronic diseases like diabetes, hypertension, cancer, etc. Hence, owing to the rising demand for nature based health solutions, deforestation, construction purposes, grazing, and agricultural expansion; several medicinal plants in general and the endemic ones, in particular, are in the verge of extinction. Therefore, conservation strategies of endangered and endemic medicinal plants, especially those located in hot spot regions, must be promoted at global level. Thus, the author aims to share certain information regarding the endemic medicinal plants in Eritrea with the international scientific world.

Keywords: endemic, eritrea, horn of Africa, medicinal plants, species

Procedia PDF Downloads 136
4525 Antimicrobial and Antibiofilm Properties of Fatty Acids Against Streptococcus Mutans

Authors: A. Mulry, C. Kealey, D. B. Brady

Abstract:

Planktonic bacteria can form biofilms which are microbial aggregates embedded within a matrix of extracellular polymeric substances (EPS). They can be found attached to abiotic or biotic surfaces. Biofilms are responsible for oral diseases such as dental caries, gingivitis and the progression of periodontal disease. Biofilms can resist 500 to 1000 times the concentration of biocides and antibiotics used to kill planktonic bacteria. Biofilm development on oral surfaces involves four stages, initial attachment, early development, maturation and dispersal of planktonic cells. The Minimum Inhibitory Concentration (MIC) was determined using a range of saturated and unsaturated fatty acids using the resazurin assay, followed by serial dilution and spot plating on BHI agar plates to establish the Minimum Bactericidal Concentration (MBC). Log reduction of bacteria was also evaluated for each fatty acid. The Minimum Biofilm Inhibition Concentration (MBIC) was determined using crystal violet assay in 96 well plates on forming and pre-formed S. mutans biofilms using BHI supplemented with 1% sucrose. Saturated medium-chain fatty acids Octanoic (C8.0), Decanoic (C10.0) and Undecanoic acid (C11.0) do not display strong antibiofilm properties; however, Lauric (C12.0) and Myristic (C14.0) display moderate antibiofilm properties with 97.83% and 97.5% biofilm inhibition with 1000 µM respectively. Monounsaturated, Oleic acid (C18.1) and polyunsaturated large chain fatty acids, Linoleic acid (C18.2) display potent antibiofilm properties with biofilm inhibition of 99.73% at 125 µM and 100% at 65.5 µM, respectively. Long-chain polyunsaturated Omega-3 fatty acids α-Linoleic (C18.3), Eicosapentaenoic Acid (EPA) (C20.5), Docosahexaenoic Acid (DHA) (C22.6) have displayed strong antibiofilm efficacy from concentrations ranging from 31.25-250µg/ml. DHA is the most promising antibiofilm agent with an MBIC of 99.73% with 15.625µg/ml. This may be due to the presence of six double bonds and the structural orientation of the fatty acid. To conclude, fatty acids displaying the most antimicrobial activity appear to be medium or long-chain unsaturated fatty acids containing one or more double bonds. Most promising agents include Omega-3-fatty acids Linoleic, α-Linoleic, EPA and DHA, as well as Omega-9 fatty acid Oleic acid. These results indicate that fatty acids have the potential to be used as antimicrobials and antibiofilm agents against S. mutans. Future work involves further screening of the most potent fatty acids against a range of bacteria, including Gram-positive and Gram-negative oral pathogens. Future work will involve incorporating the most effective fatty acids onto dental implant devices to prevent biofilm formation.

Keywords: antibiofilm, biofilm, fatty acids, S. mutans

Procedia PDF Downloads 119
4524 Probiotics’ Antibacterial Activity on Beef and Camel Minced Meat at Altered Ranges of Temperature

Authors: Rania Samir Zaki

Abstract:

Because of their inhibitory effects, selected probiotic Lactobacilli may be used as antimicrobial against some hazardous microorganisms responsible for spoilage of fresh minced beef (cattle) minced meat and camel minced meat. Lactic acid bacteria were isolated from camel meat. These included 10 isolates; 1 Lactobacillus fermenti, 4 Lactobacillus plantarum, 4 Lactobacillus pulgaricus, 3 Lactobacillus acidophilus and 1 Lactobacillus brevis. The most efficient inhibitory organism was Lactobacillus plantarum which can be used as a propiotic with antibacterial activity. All microbiological analyses were made at the time 0, first day and the second day at altered ranges of temperature [4±2 ⁰C (chilling temperature), 25±2 ⁰C, and 38±2 ⁰C]. Results showed a significant decrease of pH 6.2 to 5.1 within variant types of meat, in addition to reduction of Total Bacterial Count, Enterococci, Bacillus cereus and Escherichia coli together with the stability of Coliforms and absence of Staphylococcus aureus.

Keywords: antibacterial, camel meat, inhibition, probiotics

Procedia PDF Downloads 267
4523 Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide

Authors: Weili Shao, Qian Wang, Jianxin He

Abstract:

Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

Keywords: poly l-lactic, graphene oxide, osteogenesis, bone tissue engineering

Procedia PDF Downloads 280
4522 Effects of Glucogenic and Lipogenic Diets on Ruminal Microbiota and Metabolites in Vitro

Authors: Beihai Xiong, Dengke Hua, Wouter Hendriks, Wilbert Pellikaan

Abstract:

To improve the energy status of dairy cows in the early lactation, lots of jobs have been done on adjusting the starch to fiber ratio in the diet. As a complex ecosystem, the rumen contains a large population of microorganisms which plays a crucial role in feed degradation. Further study on the microbiota alterations and metabolic changes under different dietary energy sources is essential and valuable to better understand the function of the ruminal microorganisms and thereby to optimize the rumen function and enlarge feed efficiency. The present study will focus on the effects of two glucogenic diets (G: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on rumen fermentation, gas production, the ruminal microbiota and metabolome, and also their correlations in vitro. The gas production was recorded consistently, and the gas volume and producing rate at times 6, 12, 24, 48 h were calculated separately. The fermentation end-products were measured after fermenting for 48 h. The ruminal bacteria and archaea communities were determined by 16S RNA sequencing technique, the metabolome profile was tested through LC-MS methods. Compared to the diet G and S, the L diet had a lower dry matter digestibility, propionate production, and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the G and L diet. The metabolic analysis revealed that the lipid digestion was up-regulated by the diet L than other diets. On the subclass level, most metabolites belonging to the fatty acids and conjugates were higher, but most metabolites belonging to the amino acid, peptides, and analogs were lower in diet L than others. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. Most highly abundant bacteria were stable or slightly influenced by diets, while several amylolytic and cellulolytic bacteria were sensitive to the dietary changes. The L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in diet G and S. These affected bacteria was also proved to have high associations with certain metabolites. The Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate production in the diet G and S through enhancing the succinate pathway. The results indicated that the two glucogenic diets had a greater extent of gas production, a higher dry matter digestibility, and produced more propionate than diet L. The steam-flaked corn did not show a better performance on fermentation end-products than ground corn. This study has offered a deeper understanding of ruminal microbial functions which could assistant the improvement in rumen functions and thereby in the ruminant production.

Keywords: gas production, metabolome, microbiota, rumen fermentation

Procedia PDF Downloads 123
4521 Evaluation of Antimicrobial Activity of Different Dithiolethiones

Authors: Zehour Rahmani, Messouda Dekmouche, Mohamed Hadjadj, Mokhtar Saidi

Abstract:

In the last decades of the nineteenth century, the study of disease – causing microorganisms became concentrated on bacteria and largely institutionalized. In earlier years, the scientists interested in bacteria had originally been chemists like Pasteur, physicists like Tyndall, or botanists like Cohn and ward. For this reason, the objective of this research was to evaluate the potential of some dithiolethiones on standard microorganism strains as well as multi-drug resistant bacteria, which were isolated from hospitals. Recent studies have demonstrated, that several dithiolethione compounds, particularly (3H-1,2-dithiole-3-thione), exhibit the biological activities against several bacteria.

Keywords: bacteria, dithiolethiones, microorganism, potential

Procedia PDF Downloads 284
4520 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation

Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu

Abstract:

Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.

Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes

Procedia PDF Downloads 275
4519 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus

Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 215
4518 Development of Antimicrobial Properties Nutraceuticals: Gummy Candies with Addition of Bovine Colostrum, Essential Oils and Probiotics

Authors: E. Bartkiene, M. Ruzauskas, V. Lele, P. Zavistanaviciute, J. Bernatoniene, V. Jakstas, L. Ivanauskas, D. Zadeike, D. Klupsaite, P. Viskelis, J. Bendoraitiene, V. Navikaite-Snipaitiene, G. Juodeikiene

Abstract:

In this study, antimicrobial nutraceuticals; gummy candies (GC) from bovine colostrum (BC), essential oils (EOs), probiotic lactic acid bacteria (PLAB), and their combinations, were developed. For antimicrobial GC preparation, heteropolysaccharide (agar) was used. The antimicrobial properties of EOs (Eugenia caryophyllata, Thymus vulgaris, Citrus reticulata L., Citrus paradisi L.), BC, L. paracasei LUHS244, L. plantarum LUHS135, and their combinations against pathogenic bacteria strains (Streptococcus mutans, Enterococcus faecalis, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa) were evaluated. The highest antimicrobial properties by EO’s (Eugenia caryophyllata and Thymus vulgaris) were established. The optimal ingredients composition for antimicrobial GC preparation was established, which incorporate the BC fermented with L. paracasei LUHS244 in combination with Thymus vulgaris or Eugenia caryophyllata. These ingredients showed high inhibition properties of all tested pathogenic strains (except Pseudomonas aeruginosa). Antimicrobial GC formula consisting of thyme EO (up to 0.2%) and fermented BC (up to 3%), and for taste masking, mandarin or grapefruit EOs (up to 0.2%) was used. Developed GC high overall acceptability and antimicrobial properties, thus, antimicrobial GC could be a preferred form of nutraceuticals. This study was fulfilled with the support of the LSMU-KTU joint project.

Keywords: antimicrobial activity, bovine colostrum, essential oil, gummy candy, probiotic

Procedia PDF Downloads 147
4517 Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed

Authors: Ayoub Azizi-Shotorkhoft, Tahereh Mohammadabadi, Hosein Motamedi, Morteza Chaji, Hasan Fazaeli

Abstract:

This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed.

Keywords: termite gut bacteria, wheat straw, nutritive value, ruminant

Procedia PDF Downloads 309
4516 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model

Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman

Abstract:

Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.

Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters

Procedia PDF Downloads 35