Search results for: ceramic industrial waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5685

Search results for: ceramic industrial waste

5625 Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation

Authors: Anthony Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam, Suprakas Sinha Ray

Abstract:

High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications.

Keywords: energy storage, V₂C/ ZnS hybrid, polypyrrole, MXene, nanocomposite, dielectric

Procedia PDF Downloads 84
5624 Treatment of Greywater at Household by Using Ceramic Tablet Membranes

Authors: Abdelkader T. Ahmed

Abstract:

Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.

Keywords: ceramic membranes, filtration, greywater, wastewater treatment

Procedia PDF Downloads 307
5623 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 359
5622 Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites

Authors: M. Alsaadi, A. Erkliğ, M. Bulut

Abstract:

This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials.

Keywords: particle-reinforcement, sewage sludge ash, polymer matrix composites, mechanical properties

Procedia PDF Downloads 341
5621 Development of Ceramic Spheres Buoyancy Modules for Deep-Sea Oil Exploration

Authors: G. Blugan, B. Jiang, J. Thornberry, P. Sturzenegger, U. Gonzenbach, M. Misson, D. Cartlidge, R. Stenerud, J. Kuebler

Abstract:

Low-cost ceramic spheres were developed and manufactured from the engineering ceramic aluminium oxide. Hollow spheres of 50 mm diameter with a wall thickness of 0.5-1.0 mm were produced via an adapted slip casting technique. It was possible to produce the spheres with good repeatability and with no defects or failures in the spheres due to the manufacturing process. The spheres were developed specifically for use in buoyancy devices for deep-sea exploration conditions at depths of 3000 m below sea level. The spheres with a 1.0 mm wall thickness exhibit a buoyancy of over 54% while the spheres with a 0.5 mm wall thickness exhibit a buoyancy of over 73%. The mechanical performance of the spheres was confirmed by performing a hydraulic burst pressure test on individual spheres. With a safety factor of 3, all spheres with 1.0 mm wall thickness survived a hydraulic pressure of greater than 150 MPa which is equivalent to a depth of more than 5000 m below sea level. The spheres were then incorporated into a buoyancy module. These hollow aluminium oxide ceramic spheres offer an excellent possibility of deep-sea exploration to depths greater than the currently used technology.

Keywords: buoyancy, ceramic spheres, deep-sea, oil exploration

Procedia PDF Downloads 392
5620 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalized ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of 1 max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bio ceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis

Procedia PDF Downloads 390
5619 Investigation on Strength Properties of Concrete Using Industrial Waste as Supplementary Cementitious Material

Authors: Ravi Prasad Darapureddi

Abstract:

The use of industrial waste in making concrete reduce the consumption of natural resources and pollution of the environment. These materials possess problems of disposal and health hazards. An attempt has been made to use paper and thermal industrial wastes such as lime sludge and flyash. Present investigation is aimed at the utilization of Lime Sludge and Flyash as Supplementary Cementitious Materials (SCM) and influence of these materials on strength properties of concrete. Thermal industry waste fly ash is mixed with lime sludge and used as a replacement to cement at different proportions to obtain the strength properties and compared with ordinary concrete prepared without any additives. Grade of concrete prepared was M₂₅ designed according to Indian standard method. Cement has been replaced by paper industry waste and fly ash in different proportions such as 0% (normal concrete), 10%, 20%, and 30% by weight. Mechanical properties such as compressive strength, splitting tensile strength and flexural strength were assessed. Test results indicated that the use of lime sludge and Fly ash in concrete had improved the properties of concrete. Better results were observed at 20% replacement of cement with these additives.

Keywords: supplementary cementitious materials, lime sludge, fly ash, strength properties

Procedia PDF Downloads 162
5618 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles

Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee

Abstract:

Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.

Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite

Procedia PDF Downloads 294
5617 Development of Environmentally Clean Construction Materials Using Industrial Waste from Kazakhstan

Authors: Galiya Zhanzakovna Alzhanova, Yelaman Kanatovich Aibuldinov, Zhanar Baktybaevna Iskakova, Gaziz Galymovich Abdiyussupov, Madi Toktasynuly Omirzak, Aizhan Doldashevna Gazizova

Abstract:

The sustainable use of industrial waste has recently increased due to increased environmental problems in landfills. One of the best ways to utilise waste is as a road base material. Industrial waste is a less costly and more efficient way to strengthen local soils than by introducing new additive materials. This study explored the feasibility of utilising red mud, blast furnace slag, and lime production waste to develop environmentally friendly construction materials for stabilising natural loam. Four different ratios of red mud (20, 30, and 40%), blast furnace slag (25, 30, and 35%), lime production waste (4, 6, and 8%), and varied amounts of natural loam were combined to produce nine different mixtures. The results showed that the sample with 40% red mud, 35% blast furnace slag, and 8% lime production waste had the highest strength. The sample's measured compressive strength for 90 days was 7.38 MPa, its water resistance for the same period was 7.12 MPa, and its frost resistance for the same period was 7.35 MP; low linear expansion met the requirements of the Kazakh regulations for first-class building materials. The study of mineral composition showed that there was no contamination with heavy metals or dangerous substances. Road base materials made of red mud, blast furnace slag, lime production waste, and natural loam mix can be employed because of their durability and environmental performance. The chemical and mineral composition of raw materials was determined using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, atomic absorption spectroscopy, and axial compressive strength were examined.

Keywords: blast furnace slag, lime production waste, natural loam stabilizing, red mud, road base material

Procedia PDF Downloads 65
5616 Energy Saving Stove for Stew Coconut Sugar

Authors: Ruedee Niyomrath

Abstract:

The purposes of this research is aim to build the energy saving stove for stew coconut sugar. The research started from explores ceramic raw materials in local area, create the appropriate mixture of ceramic raw materials for construction material of stove, and make it by ceramic process. It includes design and build the energy saving stove, experiment the efficiency of energy saving stove as to thermal efficiency, energy saving, performance of time, and energy cost efficiency, transfer the knowledge for community, stove manufacturers, and technicians. The findings must be useful to the coconut sugar enterprises producing, to reduce the cost of production, preserve natural resources, and environments.

Keywords: ceramic raw material, energy saving stove, stove design, performance of stove, stove for stew coconut sugar

Procedia PDF Downloads 332
5615 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System

Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna

Abstract:

In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.

Keywords: ceramic, composite material, sintering, corundum

Procedia PDF Downloads 271
5614 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 136
5613 Multi-Criteria Decision-Making Evaluations for Oily Waste Management of Marine Oil Spill

Authors: Naznin Sultana Daisy, Mohammad Hesam Hafezi, Lei Liu

Abstract:

Nowadays, oily solid waste management has become an important issue for many countries due to frequent oil spill accidents and the increase of industrial oily wastewater. The historical oil spill data show that marine oil spills that affect the shoreline can, in extreme cases, produce up to 30 or 40 times more waste than the volume of oil initially released. Hence, responsive authorities aim to develop the most effective oily waste management solution in a timely manner to manage and minimize the waste generated. In this study initially, we tried to develop the roadmap of oily waste management for three-tiered spill scenarios for Atlantic Canada. For that purpose, three oily waste disposal scenarios are evaluated via six criteria which are determined according to the opinions of the experts from the field. Consequently, through sustainable response strategies, the most appropriate and feasible scenario is determined. The results of this study will assist to develop an integrated oily waste management system for identifying the optimal waste-generation-allocation-disposal schemes and generating the optimal management alternatives based on the holistic consideration of environmental, technological, economic, social, and regulatory factors.

Keywords: oily waste management, marine oil spill, multi-criteria decision making, oil spill response

Procedia PDF Downloads 102
5612 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 196
5611 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density

Procedia PDF Downloads 98
5610 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry

Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones

Abstract:

Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.

Keywords: acoustic, digital holographic interferometry, isolation, recycled, roof tiles, sustainable, thermal

Procedia PDF Downloads 428
5609 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: ceramic membrane, edible oil, microfiltration, wastewater

Procedia PDF Downloads 266
5608 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear

Procedia PDF Downloads 268
5607 A New Investigation Technique for Improvement of the Cullet for Pottery Glaze

Authors: Benchalak Muangmeesri

Abstract:

This research is experiment glaze from use cullet that is broken decayed from the used such as, glass bottle, windshield , etc. For seek raw material compensation that is raw material of the glaze in ceramic. The objective of the research for study the ratio of the glaze that is appropriate for glaze ceramic products and evaluate the experiment glaze on the vitreous china. The experiment has limits in using ceramic process such as, using calculation formula with triaxial, the empirical formula’s of Seger, and formula calculation is the percentage of the compound. for choose formula has will the possibility for glaze on vitreous china. The experiments in 108 triaxial can choose best formula and calculate is be left just 6 a formula for the calculation. The calculation is the percentage of the raw materials. Find that, three formulas in six formula there is percentage amount of the raw material that is cullet has the amount the little more 10 percentages then repeated experiment just three formulas. Overall, this research have three formulas for used its and we get all processes achieved and well done.

Keywords: cullet, glaze, pottery, ceramic

Procedia PDF Downloads 241
5606 Some Investigations of Primary Slurry Used for Production of Ceramic Shells

Authors: Balwinder Singh

Abstract:

In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration.

Keywords: ceramic shell, primary slurry, filler, slurry viscosity, surface roughness

Procedia PDF Downloads 445
5605 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste

Authors: Suneeta Kumari, Abanti Sahoo

Abstract:

Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.

Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan

Procedia PDF Downloads 293
5604 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 471
5603 Study for Utilization of Industrial Solid Waste, Generated by the Discharge of Casting Sand Agglomeration with Clay, Blast Furnace Slag and Sugar Cane Bagasse Ash in Concrete Composition

Authors: Mario Sergio de Andrade Zago, Javier Mazariegos Pablos, Eduvaldo Paulo Sichieri

Abstract:

This research project accomplished a study on the technical feasibility of recycling industrial solid waste generated by the discharge of casting sand agglomeration with clay, blast furnace slag and sugar cane bagasse ash. For this, the plan proposed a methodology that initially establishes a process of solid waste encapsulation, by using solidification/stabilization technique on Portland cement matrices, in which the residuals act as small and large aggregates on the composition of concrete, and later it presents the possibility of using this concrete in the manufacture of concrete pieces (concrete blocks) for paving. The results obtained in this research achieved the objective set with great success, regarding the manufacturing of concrete pieces (blocks) for paving urban roads, whenever there is special vehicle traffic or demands capable of producing accentuated abrasion effects (surpassing the 50 MPa required by the regulation), which probes the technical practicability of using waste from sand casting agglomeration with clay and blast furnace slag used in this study, unlocking usage possibilities for construction.

Keywords: industrial solid waste, solidification/stabilization, Portland cement, reuse, bagasse ash in the sugar cane, concrete

Procedia PDF Downloads 276
5602 Investigation of Utilization Possibility of Fluid Gas Desulfurization Waste for Industrial Waste Water Treatment

Authors: S. Kızıltas Demir, A. S. Kipcak, E. Moroydor Derun, N. Tugrul, S. Piskin

Abstract:

Flue gas desulfurization gypsum (FGD) is a waste material arouse from coal power plants. Hydroxyapatite (HAP) is a biomaterial with porous structure. In this study, FGD gypsum which retrieved from coal power plant in Turkey was characterized and HAP particles which can be used as an adsorbent in wastewater treatment application were synthesized from the FGD gypsum. The raw materials are characterized by using X Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques and produced HAP are characterized by using XRD. As a result, HAP particles were synthesized at the molar ratio of 5:10, 5:15, 5:20, 5:24, at room temperature, in alkaline medium (pH=11) and in 1 hour-reaction time. Among these conditions, 5:20 had the best result.

Keywords: FGD wastes, HAP, phosphogypsum, waste water

Procedia PDF Downloads 324
5601 Domain Switching Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic

Authors: Mitsuhiro Okayasu

Abstract:

To better understand the lattice characteristics of lead zirconate titanate (PZT) ceramics, the lattice orientations and domain-switching characteristics have been directly examined during loading and unloading using various experimental techniques. Upon loading, the PZT ceramics are fractured linear and nonlinearly during the compressive loading process. The strain characteristics of the PZT ceramic were directly affected by both the lattice and domain switching strain. Due to the piezoelectric ceramic, electrical activity of lightning-like behavior occurs in the PZT ceramics, which attributed to the severe domain-switching leading to weak piezoelectric property. The characteristics of domain-switching and reverse switching are detected during the loading and unloading processes. The amount of domain-switching depends on the grain, due to different stress levels. In addition, two patterns of 90˚ domain-switching systems are characterized, namely (i) 90˚ turn about the tetragonal c-axis and (ii) 90˚ rotation of the tetragonal a-axis. In this case, PZT ceramic was loaded by the thermal stress at 80°C. Extent of domain switching is related to the direction of c-axis of the tetragonal structure, e.g., that axis, orientated close to the loading direction, makes severe domain switching. It is considered that there is 90˚ domain switching, but in actual, the angle of domain switching is less than 90˚, e.g., 85.4° ~ 90.0°. In situ TEM observation of the domain switching characteristics of PZT ceramic has been conducted with increasing the sample temperature from 25°C to 300°C, and the domain switching like behavior is directly observed from the lattice image, where the severe domain switching occurs less than 100°C.

Keywords: PZT, lead zirconate titanate, piezoelectric ceramic, domain switching, material property

Procedia PDF Downloads 173
5600 Additive Manufacturing with Ceramic Filler

Authors: Irsa Wolfram, Boruch Lorenz

Abstract:

Innovative solutions with additive manufacturing applying material extrusion for functional parts necessitate innovative filaments with persistent quality. Uniform homogeneity and a consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that is rarely at the disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories that investigate complex material topics and technology science to leverage the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillersofferedfrom the market. Therefore, we introduce a prototypal laboratory methodology scalable to tailoredprimal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. - A desktop single-screw extruder serves as a core device for the experiments. Custom-made filaments encapsulate the ceramic fillers and serve with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder, preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. Itis 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms the steady dispersion of the ceramic particles in the composite filament. - This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it deliversconsistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types beyond and above ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses to create their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.

Keywords: additive manufacturing, ceramic composites, complex filament, industrial application

Procedia PDF Downloads 78
5599 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 101
5598 Biomedical Waste Management an Unsung Hero

Authors: Preeti Madan, Shalini Malhotra, Nirmaljit Kaur, Charoo Hans, VK Sabarwal

Abstract:

Hospital is one of the most diverse and complex institutions frequented by people from every walk of life without any distinction between age, sex, gender, religion or intellect. This is over and above the normal inhabitant of hospital i.e. doctors, patients, and paramedical staff. The hospital waste generated 85% is non hazardous, 10% infectious and around 5% are non-infectious but hazardous waste. The management of biomedical waste is still in its infancy. There is a lot of confusion with the problems among the generators, operators, decision makers, and general community about the safe management of biomedical waste prompt action initiated to seek new scientific, safe, and cost-effective management of waste.

Keywords: biomedical waste, nosocomial infection, waste management, hospitals

Procedia PDF Downloads 415
5597 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level

Authors: Mefleh Hamideen

Abstract:

In this investigation, the activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of the different countries of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg⁻¹ (Sample from Jordan) to 98 Bq.kg⁻¹ (Sample from China) for ²²⁶Ra, 31 Bq.kg⁻¹ (Sample from Italy) to 98 Bq.kg⁻¹ (Sample from China) for ²³²Th, and 129 Bq.kg⁻¹ (Sample from Spain) to 679 Bq.kg⁻¹ (Sample from Italy) for ⁴⁰K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.

Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level

Procedia PDF Downloads 158
5596 Superhydrophobic, Heteroporous Flexible Ceramic for Micro-Emulsion Separation, Oil Sorption, and Recovery of Fats, Oils, and Grease from Restaurant Wastewater

Authors: Jhoanne Pedres Boñgol, Zhang Liu, Yuyin Qiu, King Lun Yeung

Abstract:

Flexible ceramic sorbent material can be a viable technology to capture and recover emulsified fats, oils, and grease (FOG) that often cause sanitary sewer overflows. This study investigates the sorption capacity and recovery rate of ceramic material in surfactant-stabilized oil-water emulsion by synthesizing silica aerogel: SiO₂–X via acid-base sol-gel method followed by ambient pressure drying. The SiO₂–X is amorphous, microstructured, lightweight, flexible, and highly oleophilic. It displays spring-back behavior apparent at 80% compression with compressive strength of 0.20 MPa and can stand a weight of 1000 times its own. The contact angles measured at 0° and 177° in oil and water, respectively, confirm its oleophilicity and hydrophobicity while its thermal stability even at 450 °C is confirmed via TGA. In pure oil phase, the qe,AV. of 1x1 mm SiO₂–X is 7.5 g g⁻¹ at tqe= 10 min, and a qe,AV. of 6.05 to 6.76 g g⁻¹ at tqe= 24 hrs in O/W emulsion. The filter ceramic can be reused 50 x with 75-80 % FOG recovery by manual compression.

Keywords: adsorption, aerogel, emulsion, FOG

Procedia PDF Downloads 128