Search results for: electric power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9302

Search results for: electric power generation

9302 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 136
9301 Future of Electric Power Generation Technologies: Environmental and Economic Comparison

Authors: Abdulrahman A. Bahaddad, Mohammed Beshir

Abstract:

The objective of this paper is to demonstrate and describe eight different types of power generation technologies and to understand the history and future trends of each technology. In addition, a comparative analysis between these technologies will be presented with respect to their cost analysis and associated performance.

Keywords: conventional power generation, economic analysis, environmental impact, renewable energy power generation

Procedia PDF Downloads 99
9300 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: electric vehicles, EV, power consumption, power management, simulation

Procedia PDF Downloads 482
9299 Concept of Automation in Management of Electric Power Systems

Authors: Richard Joseph, Nerey Mvungi

Abstract:

An electric power system includes a generating, a transmission, a distribution and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.

Keywords: automation, distribution subsystem, generating subsystem, PSS/E, TANESCO, transmission subsystem

Procedia PDF Downloads 646
9298 A Variable Speed DC Motor Using a Converter DC-DC

Authors: Touati Mawloud

Abstract:

Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.

Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices

Procedia PDF Downloads 415
9297 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 513
9296 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators

Authors: A. Kianifar, M. Afzali, I. Pishbin

Abstract:

In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.

Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells

Procedia PDF Downloads 273
9295 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

Authors: Kewen Li

Abstract:

Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.

Keywords: TEG, direct power generation, efficiency, thermoelectric effect

Procedia PDF Downloads 215
9294 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor

Procedia PDF Downloads 313
9293 Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating

Authors: Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan

Abstract:

This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors.

Keywords: ambient temperature, de-rating factor, electric generator, power factor

Procedia PDF Downloads 326
9292 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 523
9291 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 109
9290 Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion

Authors: X. F. Sun, X. D. Wen, L. J. Liu, C. C. Wu, Y. H. Jia

Abstract:

The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster.

Keywords: rotation magnetic field, current driven, plasma penetration, electric propulsion

Procedia PDF Downloads 88
9289 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 108
9288 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)

Procedia PDF Downloads 481
9287 The Importance of Generating Electricity through Wind Farms in the Brazilian Electricity Matrix, from 2013 to 2020

Authors: Alex Sidarta Guglielmoni

Abstract:

Since the 1970s, sustainable development has become increasingly present on the international agenda. The present work has as general objective to analyze, discuss and bring answers to the following question, what is the importance of the generation of electric energy through the wind power plants in the Brazilian electricity matrix between 2013 and 2019? To answer this question, we analyzed the generation of renewable energy from wind farms and the consumption of electricity in Brazil during the period of January 2013 until December 2020. The specific objectives of this research are: to analyze the public data, to identify the total wind generation, to identify the total wind capacity generation, to identify the percentage participation of the generation and generation capacity of wind energy in the Brazilian electricity matrix. In order to develop this research, it was necessary a bibliographic search, collection of secondary data, tabulation of generation data, and electricity capacity by a comparative analysis between wind power and the Brazilian electricity matrix. As a result, it was possible to observe how important Brazil is for global sustainable development and how much this country can grow with this, in view of its capacity and potential for generating wind power since this percentage has grown in past few years.

Keywords: wind power, Brazilian market, electricity matrix, generation capacity

Procedia PDF Downloads 92
9286 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 465
9285 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: smart grids, wind turbine, modeling, renewable energy, robust control

Procedia PDF Downloads 204
9284 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 120
9283 Electric Propulsion System Development for High Floor Trolley Bus

Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari

Abstract:

The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.

Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle

Procedia PDF Downloads 320
9282 Investigation of Solar Concentrator Prototypes under Tunisian Conditions

Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani

Abstract:

Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.

Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation

Procedia PDF Downloads 228
9281 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 337
9280 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things

Authors: Wei Hu, Wenguang Chen, Chong Dong

Abstract:

In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.

Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management

Procedia PDF Downloads 98
9279 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: thermo electric generator, LED, converts, temperature

Procedia PDF Downloads 109
9278 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment

Authors: Rade M. Ciric, Sasa Mandic

Abstract:

Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.

Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work

Procedia PDF Downloads 431
9277 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method

Procedia PDF Downloads 302
9276 Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan

Authors: Hiroaki Sumi, Kiichiro Hayashi

Abstract:

Now, the use of renewable energy power generation has been advanced. In this paper, we compared the expansion support policy of photovoltaic power generation which was researched using The internet and the amount of resource for photovoltaic power generation which was estimated using the NEDO formula in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of the amount of resources. We think it would need to consider the suitability between the policies and resources.

Keywords: photovoltaic power generation, dissemination and support policy, amount of resources, Japan

Procedia PDF Downloads 534
9275 Karachi Electric Power Technical and Financial Performance Evaluation after Privatization

Authors: Fawad Azeem

Abstract:

This paper deals with the comparative analysis of Karachi Electric before and after privatization. Technical as well as financial analysis has been done based on the available KE’s stats for last decade. Karachi Electric has evolved as a better entity in terms of its financial and technical achievements. On the other hand, human resources have been seriously affected due to mass firing of employees from the organizations. Study and analysis show that transparent and unbiased privatization practices on institutions like KE that were in serious trouble can upsurge the standards of the institution. Further, for the betterment of the social circle privatization must not affect the employment opportunities.

Keywords: Karachi Electric, power, energy, privatization

Procedia PDF Downloads 327
9274 Unified Assessment of Power System Reserve-based Reliability Levels

Authors: B. M. Alshammari, M. A. El-Kady

Abstract:

This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.

Keywords: assessment, power system, reserve, reliability

Procedia PDF Downloads 586
9273 Challenges with Synchrophasor Technology Deployments in Electric Power Grids

Authors: Emmanuel U. Oleka, Anil Khanal, Gary L. Lebby, Ali R. Osareh

Abstract:

Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology.

Keywords: electric power grid, grid visualization, phasor measurement unit, synchrophasor

Procedia PDF Downloads 523