Search results for: bending energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8590

Search results for: bending energy

8470 Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms

Authors: Kang Kun Lee

Abstract:

New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction.

Keywords: hollowcore slab, section force-deformation response, precast concrete deck

Procedia PDF Downloads 360
8469 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 314
8468 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 301
8467 Towards Achieving Energy Efficiency in Kazakhstan

Authors: Aigerim Uyzbayeva, Valeriya Tyo, Nurlan Ibrayev

Abstract:

Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus, country consumes a significant amount of energy due to the high level of industralisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991-2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised, followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described.

Keywords: energy efficiency in Kazakhstan, greenhouse gases, renewable energy, sustainable development

Procedia PDF Downloads 556
8466 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives

Authors: Fahim Ullah, Muhammad Usman

Abstract:

Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.

Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis

Procedia PDF Downloads 22
8465 Non-Homogeneous Layered Fiber Reinforced Concrete

Authors: Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.

Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering

Procedia PDF Downloads 344
8464 Performances of the Double-Crystal Setup at CERN SPS Accelerator for Physics beyond Colliders Experiments

Authors: Andrii Natochii

Abstract:

We are currently presenting the recent results from the CERN accelerator facilities obtained in the frame of the UA9 Collaboration. The UA9 experiment investigates how a tiny silicon bent crystal (few millimeters long) can be used for various high-energy physics applications. Due to the huge electrostatic field (tens of GV/cm) between crystalline planes, there is a probability for charged particles, impinging the crystal, to be trapped in the channeling regime. It gives a possibility to steer a high intensity and momentum beam by bending the crystal: channeled particles will follow the crystal curvature and deflect on the certain angle (from tens microradians for LHC to few milliradians for SPS energy ranges). The measurements at SPS, performed in 2017 and 2018, confirmed that the protons deflected by the first crystal, inserted in the primary beam halo, can be caught and channeled by the second crystal. In this configuration, we measure the single pass deflection efficiency of the second crystal and prove our opportunity to perform the fixed target experiment at SPS accelerator (LHC in the future).

Keywords: channeling, double-crystal setup, fixed target experiment, Timepix detector

Procedia PDF Downloads 123
8463 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope

Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov

Abstract:

Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.

Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions

Procedia PDF Downloads 295
8462 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance

Procedia PDF Downloads 261
8461 Analysis of Simply Supported Beams Using Elastic Beam Theory

Authors: M. K. Dce

Abstract:

The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.

Keywords: beam, UDL, bending moment, deflection, elastic beam theory

Procedia PDF Downloads 363
8460 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: active tuned mass damper, high-rise building, multi-frequency tuning, vibration control

Procedia PDF Downloads 59
8459 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation

Procedia PDF Downloads 453
8458 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary

Authors: András Medve, Katalin Szabad, István Patkó

Abstract:

According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.

Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary

Procedia PDF Downloads 571
8457 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 364
8456 Design Analysis of Solar Energy Panels for Tropical Nigeria

Authors: Cyril Agochi Okorowo

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply.

Keywords: analysis, energy, design, solar

Procedia PDF Downloads 259
8455 Sustainable Agriculture in Nigeria: Integrating Energy Efficiency and Renewables

Authors: Vicx Farm

Abstract:

This paper examines the critical role of energy efficiency management and renewable energy in fostering sustainable agricultural practices in Nigeria. With the growing concerns over energy security, environmental degradation, and climate change, there is an urgent need to transition towards more sustainable energy sources and practices in the agricultural sector. Nigeria, being a significant player in the global agricultural market, stands to benefit immensely from integrating energy efficiency measures and renewable energy solutions into its agricultural activities. This paper discusses the current energy challenges facing Nigerian agriculture, explores the potential benefits of energy efficiency and renewable energy adoption, and proposes strategies for effective implementation. The paper concludes with recommendations for policymakers, stakeholders, and practitioners to accelerate the adoption of energy-efficient and renewable energy technologies in Nigerian agriculture, thereby promoting sustainable development and resilience in the sector.

Keywords: energy, agriculture, sustainability, power

Procedia PDF Downloads 32
8454 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber

Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima

Abstract:

Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.

Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis

Procedia PDF Downloads 47
8453 Consolidation of Carbonyl Nickel Powders by Hot Pressing

Authors: Ridvan Yamanoglu, Ismail Daoud

Abstract:

In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.

Keywords: nickel powder, sintering, hot press, mechanical properties

Procedia PDF Downloads 139
8452 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex

Authors: Li Zhu, Binghua Wang, Yong Sun

Abstract:

China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.

Keywords: agritourism complex, energy planning, energy demand simulation, hierarchical structure model

Procedia PDF Downloads 165
8451 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 441
8450 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 545
8449 Wave Energy: Efficient Conversion of the Big Waves

Authors: Md. Moniruzzaman

Abstract:

The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.

Keywords: anchor, electricity, floating object, pump, ship city, wave energy

Procedia PDF Downloads 57
8448 Analysis of Delamination in Drilling of Composite Materials

Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi

Abstract:

In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.

Keywords: composite material, delamination, drilling, thrust force

Procedia PDF Downloads 490
8447 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector

Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid

Abstract:

For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.

Keywords: electricity, energy policy, energy security, Malaysia

Procedia PDF Downloads 274
8446 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 427
8445 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations

Procedia PDF Downloads 231
8444 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 203
8443 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 380
8442 Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Authors: S. Behnam Asl, H. Sadeghi Naeini, L. Sadat Ensaniat, R. Khorshidian, S. Alipour, S. Behnam Asl

Abstract:

Nowadays, the construction industry is growing, especially among developing countries. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) account for 7% of the whole diseases in the society, which makes some limitations. One of the main factors which causes WMSDs is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study, we aimed to find the major tasks of bar benders and the most important risk factors related to it. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS method. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, about 59% of workers had troubles in their wrists, hands, especially workers who worked in steel bar bending. In 46% cases lower back pain was in prevalence. Considering gathered data and results, awkward postures and long term tasks and their duration are known as the main risk factors of WMSDs among construction workers, meaning that work-rest schedule and tools design should be reconsidered to make an ergonomic condition for the mentioned workers.

Keywords: bar benders, construction workers, musculoskeletal disorders (WMSDs), OWAS method

Procedia PDF Downloads 276
8441 Optimized Design, Material Selection, and Improvement of Liners, Mother Plate, and Stone Box of a Direct Charge Transfer Chute in a Sinter Plant: A Computational Approach

Authors: Anamitra Ghosh, Neeladri Paul

Abstract:

The present work aims at investigating material combinations and thereby improvising an optimized design of liner-mother plate arrangement and that of the stone box, such that it has low cost, high weldability, sufficiently capable of withstanding the increased amount of corrosive shear and bending loads, and having reduced thermal expansion coefficient at temperatures close to 1000 degrees Celsius. All the above factors have been preliminarily examined using a computational approach via ANSYS Thermo-Structural Computation, a commercial software that uses the Finite Element Method to analyze the response of simulated design specimens of liner-mother plate arrangement and the stone box, to varied bending, shear, and thermal loads as well as to determine the temperature gradients developed across various surfaces of the designs. Finally, the optimized structural designs of the liner-mother plate arrangement and that of the stone box with improved material and better structural and thermal properties are selected via trial-and-error method. The final improvised design is therefore considered to enhance the overall life and reliability of a Direct Charge Transfer Chute that transfers and segregates the hot sinter onto the cooler in a sinter plant.

Keywords: shear, bending, thermal, sinter, simulated, optimized, charge, transfer, chute, expansion, computational, corrosive, stone box, liner, mother plate, arrangement, material

Procedia PDF Downloads 79